# -*- coding: utf-8 -*-
"""DocAI_DeploymentGradio.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1USSEj7nHh2n2hUhTJTC0Iwhj6mSR7-mD
"""
import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
os.system('pip install pyyaml==5.1')
os.system('pip install -q git+https://github.com/huggingface/transformers.git')
os.system('pip install -q datasets seqeval')
os.system('pip install torch==1.8.0+cu101 torchvision==0.9.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html')
os.system('pip install -q detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.8/index.html')
os.system('pip install -q pytesseract')
!pip install gradio
!pip install -q git+https://github.com/huggingface/transformers.git
!pip install h5py
!pip install -q datasets seqeval
import gradio as gr
import numpy as np
import tensorflow as tf
import torch
import json
from datasets.features import ClassLabel
from transformers import AutoProcessor
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
from datasets import load_dataset # this dataset uses the new Image feature :)
from transformers import LayoutLMv3Processor,LayoutLMv3ForTokenClassification, AutoProcessor ,AutoModelForTokenClassification
#import cv2
from PIL import Image, ImageDraw, ImageFont
processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base",apply_ocr = True)
model = LayoutLMv3ForTokenClassification.from_pretrained("nielsr/layoutlmv3-finetuned-funsd")
dataset = load_dataset("nielsr/funsd-layoutlmv3")
example = dataset["test"][0]
example["image"].save("example1.png")
example1 = dataset["test"][1]
example1["image"].save("example2.png")
example2 = dataset["test"][2]
example2["image"].save("example3.png")
#example2["image"]
labels = dataset["test"].features['ner_tags'].feature.names
words, boxes, ner_tags = example["tokens"], example["bboxes"], example["ner_tags"]
features = dataset["test"].features
column_names = dataset["test"].column_names
image_column_name = "image"
text_column_name = "tokens"
boxes_column_name = "bboxes"
label_column_name = "ner_tags"
# In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
# unique labels.
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
if isinstance(features[label_column_name].feature, ClassLabel):
label_list = features[label_column_name].feature.names
# No need to convert the labels since they are already ints.
id2label = {k: v for k,v in enumerate(label_list)}
label2id = {v: k for k,v in enumerate(label_list)}
else:
label_list = get_label_list(dataset["test"][label_column_name])
id2label = {k: v for k,v in enumerate(label_list)}
label2id = {v: k for k,v in enumerate(label_list)}
num_labels = len(label_list)
def get_label_list(labels):
unique_labels = set()
for label in labels:
unique_labels = unique_labels | set(label)
label_list = list(unique_labels)
label_list.sort()
return label_list
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
# we need to define custom features for `set_format` (used later on) to work properly
features = Features({
'pixel_values': Array3D(dtype="float32", shape=(3, 224, 224)),
'input_ids': Sequence(feature=Value(dtype='int64')),
'attention_mask': Sequence(Value(dtype='int64')),
'bbox': Array2D(dtype="int64", shape=(512, 4)),
'labels': Sequence(feature=Value(dtype='int64')),
})
def process_image(image):
width, height = image.size
# encode
encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
offset_mapping = encoding.pop('offset_mapping')
# forward pass
outputs = model(**encoding)
# get predictions
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
# only keep non-subword predictions
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
# draw predictions over the image
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
def iob_to_label(label):
label = label[2:]
if not label:
return 'other'
return label
label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'}
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction) #.lower()
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
return image
title = "DocumentAI - Extraction using LayoutLMv3 model"
description = "Extraction of Form or Invoice Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
article="References
[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. Paper Link
[2] LayoutLMv3 training and inference"
examples =[['example1.png'],['example2.png'],['example3.png']]
css = """.output_image, .input_image {height: 600px !important}"""
iface = gr.Interface(fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil", label="annotated image"),
title=title,
description=description,
article=article,
examples=examples,
css=css,
analytics_enabled = True, enable_queue=True
)
#iface.launch(inline=False, share=False, debug=False)
iface.launch(inline=False)