import os import gradio as gr import transformers # Set up the Hugging Face Transformers library model_name = "bert-base-uncased" tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) model = transformers.AutoModel.from_pretrained(model_name) # Set up the Blackbox.ai API client blackbox_client.Client.from_api_key(os.environ["BLACKBOX_API_KEY"]) # Define the user interface for the app def run_model(input_text): # Tokenize the input text inputs = tokenizer(input_text, return_tensors="pt") # Run the model on the inputs outputs = model(**inputs) # Extract the last hidden state from the model outputs last_hidden_states = outputs.last_hidden_state # Return the last hidden state as a string return last_hidden_states.detach().numpy().tolist() iface = gr.Interface(fn=run_model, inputs="text", outputs="text") # Define the GitHub bot functions def get_issues(): # Code to get issues from the GitHub repository pass def fix_issue(issue): # Code to fix the issue on the local fork pass def push_fix(): # Code to push the fix to the GitHub repository pass def comment_on_issue(issue, result): # Code to comment on the issue with the result pass # Define the main function to run the app and the bot def main(): # Run the app iface.launch() # Get the issues from the GitHub repository issues = get_issues() # Loop through the issues for issue in issues: # Fix the issue on the local fork fixed_issue = fix_issue(issue) # Run the model on the fixed issue result = run_model(fixed_issue) # Push the fix to the GitHub repository push_fix() # Comment on the issue with the result comment_on_issue(issue, result) # Run the main function if __name__ == "__main__": main()