import streamlit as st import os import subprocess import random import string from huggingface_hub import cached_download, hf_hub_url from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import black import pylint from transformers import AutoModelForSequenceClassification, AutoTokenizer from transformers import pipeline from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # Define functions for each feature # 1. Chat Interface def chat_interface(input_text): """Handles user input in the chat interface. Args: input_text: User's input text. Returns: The chatbot's response. """ # Load the appropriate language model from Hugging Face model_name = 'google/flan-t5-xl' # Choose a suitable model model_url = hf_hub_url(repo_id=model_name, revision='main', filename='config.json') model_path = cached_download(model_url) generator = pipeline('text-generation', model=model_path) # Generate chatbot response response = generator(input_text, max_length=50, num_return_sequences=1, do_sample=True)[0]['generated_text'] return response # 2. Terminal def terminal_interface(command): """Executes commands in the terminal. Args: command: User's command. Returns: The terminal output. """ # Execute command try: process = subprocess.run(command.split(), capture_output=True, text=True) output = process.stdout except Exception as e: output = f'Error: {e}' return output # 3. Code Editor def code_editor_interface(code): """Provides code completion, formatting, and linting in the code editor. Args: code: User's code. Returns: Formatted and linted code. """ # Format code using black try: formatted_code = black.format_str(code, mode=black.FileMode()) except black.InvalidInput: formatted_code = code # Keep original code if formatting fails # Lint code using pylint try: pylint_output = pylint.run(formatted_code, output=None) lint_results = pylint_output.linter.stats.get('global_note', 0) lint_message = f"Pylint score: {lint_results:.2f}" except Exception as e: lint_message = f"Pylint error: {e}" return formatted_code, lint_message # 4. Workspace def workspace_interface(project_name): """Manages projects, files, and resources in the workspace. Args: project_name: Name of the new project. Returns: Project creation status. """ # Create project directory try: os.makedirs(os.path.join('projects', project_name)) status = f'Project \"{project_name}\" created successfully.' except FileExistsError: status = f'Project \"{project_name}\" already exists.' return status # 5. AI-Infused Tools # Define custom AI-powered tools using Hugging Face models # Example: Text summarization tool def summarize_text(text): """Summarizes a given text using a Hugging Face model. Args: text: Text to be summarized. Returns: Summarized text. """ summarizer = pipeline('summarization', model='facebook/bart-large-cnn') summary = summarizer(text, max_length=100, min_length=30)[0]['summary_text'] return summary # 6. Code Generation def generate_code(idea): """Generates code based on a given idea using the bigscience/T0_3B model. Args: idea: The idea for the code to be generated. Returns: The generated code as a string. """ # Load the code generation model model_name = 'bigscience/T0_3B' # Choose your model model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Generate the code input_text = f""" # Idea: {idea} # Code: """ input_ids = tokenizer.encode(input_text, return_tensors="pt") output_sequences = model.generate( input_ids=input_ids, max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True, temperature=0.7, # Adjust temperature for creativity top_k=50, # Adjust top_k for diversity ) generated_code = tokenizer.decode(output_sequences[0], skip_special_tokens=True) # Remove the prompt and formatting generated_code = generated_code.split("\n# Code:")[1].strip() return generated_code # 7. Sentiment Analysis def analyze_sentiment(text): """Analyzes the sentiment of a given text. Args: text: The text to analyze. Returns: A dictionary containing the sentiment label and score. """ model_name = 'distilbert-base-uncased-finetuned-sst-3-literal-labels' model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) result = classifier(text)[0] return result # 8. Text Translation def translate_text(text, target_language): """Translates a given text to the specified target language. Args: text: The text to translate. target_language: The target language code (e.g., 'fr' for French, 'es' for Spanish). Returns: The translated text. """ translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") # Example: English to Spanish translation = translator(text, target_lang=target_language)[0]['translation_text'] return translation # Streamlit App st.title("CodeCraft: Your AI-Powered Development Toolkit") # Workspace Selection st.sidebar.header("Select Workspace") project_name = st.sidebar.selectbox("Choose a project", os.listdir('projects')) # Chat Interface st.header("Chat with CodeCraft") chat_input = st.text_area("Enter your message:") if st.button("Send"): chat_response = chat_interface(chat_input) st.write(f"CodeCraft: {chat_response}") # Terminal Interface st.header("Terminal") terminal_input = st.text_input("Enter a command:") if st.button("Run"): terminal_output = terminal_interface(terminal_input) st.code(terminal_output, language="bash") # Code Editor Interface st.header("Code Editor") code_editor = st.text_area("Write your code:", language="python", height=300) if st.button("Format & Lint"): formatted_code, lint_message = code_editor_interface(code_editor) st.code(formatted_code, language="python") st.info(lint_message) # AI-Infused Tools st.header("AI-Powered Tools") # Text Summarization st.subheader("Text Summarization") text_to_summarize = st.text_area("Enter text to summarize:") if st.button("Summarize"): summary = summarize_text(text_to_summarize) st.write(f"Summary: {summary}") # Sentiment Analysis st.subheader("Sentiment Analysis") text_to_analyze = st.text_area("Enter text to analyze sentiment:") if st.button("Analyze Sentiment"): sentiment_result = analyze_sentiment(text_to_analyze) st.write(f"Sentiment: {sentiment_result['label']}, Score: {sentiment_result['score']}") # Text Translation st.subheader("Text Translation") text_to_translate = st.text_area("Enter text to translate:") target_language = st.selectbox("Choose target language", ['fr', 'es', 'de', 'zh-CN']) # Example languages if st.button("Translate"): translation = translate_text(text_to_translate, target_language) st.write(f"Translation: {translation}") # Code Generation st.header("Code Generation") code_idea = st.text_input("Enter your code idea:") if st.button("Generate Code"): try: generated_code = generate_code(code_idea) st.code(generated_code, language="python") except Exception as e: st.error(f"Error generating code: {e}") # Launch Chat App (with Authentication) if st.button("Launch Chat App"): # Get the current working directory cwd = os.getcwd() # User Authentication hf_token = st.text_input("Enter your Hugging Face Token:") if hf_token: # Set the token using HfFolder HfFolder.save_token(hf_token) # Construct the command to launch the chat app command = f"cd projects/{project_name} && streamlit run chat_app.py" # Execute the command try: process = subprocess.run(command.split(), capture_output=True, text=True) st.write(f"Chat app launched successfully!") except Exception as e: st.error(f"Error launching chat app: {e}")