import os import subprocess import random from huggingface_hub import InferenceClient import gradio as gr from safe_search import safe_search from i_search import google from i_search import i_search as i_s from agent import ( ACTION_PROMPT, ADD_PROMPT, COMPRESS_HISTORY_PROMPT, LOG_PROMPT, LOG_RESPONSE, MODIFY_PROMPT, PREFIX, SEARCH_QUERY, READ_PROMPT, TASK_PROMPT, UNDERSTAND_TEST_RESULTS_PROMPT, ) from utils import parse_action, parse_file_content, read_python_module_structure from datetime import datetime now = datetime.now() date_time_str = now.strftime("%Y-%m-%d %H:%M:%S") client = InferenceClient( "mistralai/Mixtral-8x7B-Instruct-v0.1" ) ############################################ VERBOSE = True MAX_HISTORY = 100 #MODEL = "gpt-3.5-turbo" # "gpt-4" def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def run_gpt( prompt_template, stop_tokens, max_tokens, purpose, **prompt_kwargs, ): seed = random.randint(1,1111111111111111) print (seed) generate_kwargs = dict( temperature=1.0, max_new_tokens=2096, top_p=0.99, repetition_penalty=1.0, do_sample=True, seed=seed, ) content = PREFIX.format( date_time_str=date_time_str, purpose=purpose, safe_search=safe_search, ) + prompt_template.format(**prompt_kwargs) if VERBOSE: print(LOG_PROMPT.format(content)) #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) #formatted_prompt = format_prompt(f'{content}', history) stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) resp = "" for response in stream: resp += response.token.text if VERBOSE: print(LOG_RESPONSE.format(resp)) return resp def compress_history(purpose, task, history, directory): resp = run_gpt( COMPRESS_HISTORY_PROMPT, stop_tokens=["observation:", "task:", "action:", "thought:"], max_tokens=512, purpose=purpose, task=task, history=history, ) history = "observation: {}\n".format(resp) return history def call_search(purpose, task, history, directory, action_input): print("CALLING SEARCH") try: if "http" in action_input: if "<" in action_input: action_input = action_input.strip("<") if ">" in action_input: action_input = action_input.strip(">") response = i_s(action_input) #response = google(search_return) print(response) history += "observation: search result is: {}\n".format(response) else: history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n" except Exception as e: history += "observation: {}'\n".format(e) return "MAIN", None, history, task def call_main(purpose, task, history, directory, action_input): resp = run_gpt( ACTION_PROMPT, stop_tokens=["observation:", "task:", "action:","thought:"], max_tokens=2096, purpose=purpose, task=task, history=history, ) lines = resp.strip().strip("\n").split("\n") for line in lines: if line == "": continue if line.startswith("thought: "): history += "{}\n".format(line) elif line.startswith("action: "): action_name, action_input = parse_action(line) print (f'ACTION_NAME :: {action_name}') print (f'ACTION_INPUT :: {action_input}') history += "{}\n".format(line) if "COMPLETE" in action_name or "COMPLETE" in action_input: task = "END" return action_name, action_input, history, task else: return action_name, action_input, history, task else: history += "{}\n".format(line) #history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line) #return action_name, action_input, history, task #assert False, "unknown action: {}".format(line) return "MAIN", None, history, task def call_set_task(purpose, task, history, directory, action_input): task = run_gpt( TASK_PROMPT, stop_tokens=[], max_tokens=64, purpose=purpose, task=task, history=history, ).strip("\n") history += "observation: task has been updated to: {}\n".format(task) return "MAIN", None, history, task def end_fn(purpose, task, history, directory, action_input): task = "END" return "COMPLETE", "COMPLETE", history, task NAME_TO_FUNC = { "MAIN": call_main, "UPDATE-TASK": call_set_task, "SEARCH": call_search, "COMPLETE": end_fn, } def run_action(purpose, task, history, directory, action_name, action_input): print(f'action_name::{action_name}') try: if "RESPONSE" in action_name or "COMPLETE" in action_name: action_name="COMPLETE" task="END" return action_name, "COMPLETE", history, task # compress the history when it is long if len(history.split("\n")) > MAX_HISTORY: if VERBOSE: print("COMPRESSING HISTORY") history = compress_history(purpose, task, history, directory) if not action_name in NAME_TO_FUNC: action_name="MAIN" if action_name == "" or action_name == None: action_name="MAIN" assert action_name in NAME_TO_FUNC print("RUN: ", action_name, action_input) return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input) except Exception as e: history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n" return "MAIN", None, history, task def run(purpose,history): #print(purpose) #print(hist) task=None directory="./" if history: history=str(history).strip("[]") if not history: history = "" action_name = "UPDATE-TASK" if task is None else "MAIN" action_input = None while True: print("") print("") print("---") print("purpose:", purpose) print("task:", task) print("---") print(history) print("---") action_name, action_input, history, task = run_action( purpose, task, history, directory, action_name, action_input, ) yield (history) #yield ("",[(purpose,history)]) if task == "END": return (history) #return ("", [(purpose,history)]) ################################################ def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt agents =[ "WEB_DEV", "AI_SYSTEM_PROMPT", "PYTHON_CODE_DEV" ] def generate( prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): seed = random.randint(1,1111111111111111) agent=prompts.WEB_DEV if agent_name == "WEB_DEV": agent = prompts.WEB_DEV if agent_name == "AI_SYSTEM_PROMPT": agent = prompts.AI_SYSTEM_PROMPT if agent_name == "PYTHON_CODE_DEV": agent = prompts.PYTHON_CODE_DEV system_prompt=agent temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=seed, ) formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Dropdown( label="Agents", choices=[s for s in agents], value=agents[0], interactive=True, ), gr.Textbox( label="System Prompt", max_lines=1, interactive=True, ), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=1048*10, minimum=0, maximum=1048*10, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ), ] examples=[ ["Create a basic Python web app using Flask.", None, None, None, None, None, ], ["Build a simple Streamlit app to display a data visualization.", None, None, None, None, None, ], ["I need a Gradio interface for a machine learning model that takes an image as input and outputs a classification.", None, None, None, None, None, ], ["Generate a Python script to scrape data from a website.", None, None, None, None, None, ], ["I'm building a React app. How can I use Axios to make API calls?", None, None, None, None, None, ], ["Write a Python function to read data from a CSV file.", None, None, None, None, None, ], ["I want to deploy my Flask app to Heroku.", None, None, None, None, None, ], ["Explain the difference between Git and GitHub.", None, None, None, None, None, ], ["How can I use Docker to containerize my Python app?", None, None, None, None, None, ], ["I need a simple API endpoint for my web app using Flask.", None, None, None, None, None, ], ["Create a function in Python to calculate the factorial of a number.", None, None, None, None, None, ], ] ''' gr.ChatInterface( fn=run, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), title="Mixtral 46.7B\nMicro-Agent\nInternet Search
development test", examples=examples, concurrency_limit=20, with gr.Blocks() as ifacea: gr.HTML("""TEST""") ifacea.launch() ).launch() with gr.Blocks() as iface: #chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), chatbot=gr.Chatbot() msg = gr.Textbox() with gr.Row(): submit_b = gr.Button() clear = gr.ClearButton([msg, chatbot]) submit_b.click(run, [msg,chatbot],[msg,chatbot]) msg.submit(run, [msg, chatbot], [msg, chatbot]) iface.launch() ''' gr.ChatInterface( fn=run, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), title="Mixtral 46.7B\nMicro-Agent\nInternet Search
development test", examples=examples, concurrency_limit=20, ).launch(show_api=False) Implementation of Next Steps: Terminal Integration: Install Libraries: Install either streamlit-terminal or gradio-terminal depending on your chosen framework. Integrate the Terminal: Use the library's functions to embed a terminal component within your Streamlit or Gradio app. Capture Input: Capture the user's input from the terminal and pass it to your command execution function. Display Output: Display the output of the terminal commands, including both standard output and errors. Code Generation: LLM Selection: Choose a Hugging Face Transformer model that is suitable for code generation (e.g., google/flan-t5-xl, Salesforce/codet5-base, microsoft/CodeGPT-small). Prompt Engineering: Develop effective prompts for the LLM to generate code based on natural language instructions. Code Translation Function: Create a function that takes natural language input, passes it to the LLM with the appropriate prompt, and then returns the generated code. Code Correction: You can explore ways to automatically correct code errors, perhaps using a combination of syntax checking and LLM assistance. Workspace Explorer: Streamlit or Gradio Filesystem Access: Use Streamlit's st.file_uploader or Gradio's gr.File component to allow users to upload files. File Management: Implement functions to create, edit, and delete files and directories within the workspace. Display Files: Use Streamlit's st.code or Gradio's gr.File component to display the contents of files in the workspace. Directory Structure: Display the directory structure of the workspace using a tree-like representation. Dependency Management: Package Installation: Create a function that takes a package name as input, installs it using pip, and updates the requirements.txt file. Workspace Population: Develop a function to create files and directories in the workspace based on installed packages. Application Build and Launch: Build Logic: Develop a function to build the web app based on the user's code and dependencies. Launch Functionality: Implement a mechanism to launch the built app. Error Correction: Identify and correct errors during the build and launch process. Automated Assistance: Provide automated assistance during the build and launch process, with a gradient slider to adjust the level of user override. Recommendations, Enhancements, Optimizations, and Workflow: 1. LLM Selection for Code Generation: * **Google/Flan-T5-XL:** Excellent for code generation, particularly for Python. * **Salesforce/CodeT5-Base:** Strong for code generation, with a focus on code summarization and translation. * **Microsoft/CodeGPT-Small:** A smaller model that is suitable for code generation tasks, especially if you have limited computational resources. 2. Prompt Engineering for Code Generation: * **Contextual Prompts:** Provide the LLM with as much context as possible, including the desired programming language, libraries, and any specific requirements. * **Code Snippets:** If possible, include code snippets as part of the prompt to guide the LLM's code generation. * **Iterative Refinement:** Use iterative prompting to refine the generated code. Start with a basic prompt and then provide feedback to the LLM to improve the code. 3. Workspace Exploration: * **Tree-Like View:** Use a tree-like representation to display the workspace's directory structure. * **Search Functionality:** Implement a search bar to allow users to quickly find specific files or directories. * **Code Highlighting:** Provide code highlighting for files in the workspace to improve readability. 4. Dependency Management: * **Virtual Environments:** Use virtual environments to isolate project dependencies and prevent conflicts. * **Automatic Updates:** Implement a mechanism to automatically update dependencies when new versions are available. * **Dependency Locking:** Use tools like `pip-tools` or `poetry` to lock dependencies to specific versions, ensuring consistent builds. 5. Application Build and Launch: * **Build Tool Integration:** Consider integrating a build tool like `poetry` or `pipenv` into your workflow to automate the build process. * **Containerization:** Containerize the app using Docker to ensure consistent deployments across different environments. * **Deployment Automation:** Explore tools like `Heroku`, `AWS Elastic Beanstalk`, or `Google App Engine` to automate the deployment process. 6. Automated Assistance: * **Error Detection and Correction:** Implement a system that can detect common coding errors and suggest corrections. * **Code Completion:** Use an LLM to provide code completion suggestions as the user types.