import os
import subprocess
import random
from huggingface_hub import InferenceClient
import gradio as gr
from safe_search import safe_search
from i_search import google
from i_search import i_search as i_s
from agent import (
ACTION_PROMPT,
ADD_PROMPT,
COMPRESS_HISTORY_PROMPT,
LOG_PROMPT,
LOG_RESPONSE,
MODIFY_PROMPT,
PREFIX,
SEARCH_QUERY,
READ_PROMPT,
TASK_PROMPT,
UNDERSTAND_TEST_RESULTS_PROMPT,
)
from utils import parse_action, parse_file_content, read_python_module_structure
from datetime import datetime
now = datetime.now()
date_time_str = now.strftime("%Y-%m-%d %H:%M:%S")
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
############################################
VERBOSE = True
MAX_HISTORY = 100
#MODEL = "gpt-3.5-turbo" # "gpt-4"
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
def run_gpt(
prompt_template,
stop_tokens,
max_tokens,
purpose,
**prompt_kwargs,
):
seed = random.randint(1,1111111111111111)
print (seed)
generate_kwargs = dict(
temperature=1.0,
max_new_tokens=2096,
top_p=0.99,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
content = PREFIX.format(
date_time_str=date_time_str,
purpose=purpose,
safe_search=safe_search,
) + prompt_template.format(**prompt_kwargs)
if VERBOSE:
print(LOG_PROMPT.format(content))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#formatted_prompt = format_prompt(f'{content}', history)
stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False)
resp = ""
for response in stream:
resp += response.token.text
if VERBOSE:
print(LOG_RESPONSE.format(resp))
return resp
def compress_history(purpose, task, history, directory):
resp = run_gpt(
COMPRESS_HISTORY_PROMPT,
stop_tokens=["observation:", "task:", "action:", "thought:"],
max_tokens=512,
purpose=purpose,
task=task,
history=history,
)
history = "observation: {}\n".format(resp)
return history
def call_search(purpose, task, history, directory, action_input):
print("CALLING SEARCH")
try:
if "http" in action_input:
if "<" in action_input:
action_input = action_input.strip("<")
if ">" in action_input:
action_input = action_input.strip(">")
response = i_s(action_input)
#response = google(search_return)
print(response)
history += "observation: search result is: {}\n".format(response)
else:
history += "observation: I need to provide a valid URL to 'action: SEARCH action_input=https://URL'\n"
except Exception as e:
history += "observation: {}'\n".format(e)
return "MAIN", None, history, task
def call_main(purpose, task, history, directory, action_input):
resp = run_gpt(
ACTION_PROMPT,
stop_tokens=["observation:", "task:", "action:","thought:"],
max_tokens=2096,
purpose=purpose,
task=task,
history=history,
)
lines = resp.strip().strip("\n").split("\n")
for line in lines:
if line == "":
continue
if line.startswith("thought: "):
history += "{}\n".format(line)
elif line.startswith("action: "):
action_name, action_input = parse_action(line)
print (f'ACTION_NAME :: {action_name}')
print (f'ACTION_INPUT :: {action_input}')
history += "{}\n".format(line)
if "COMPLETE" in action_name or "COMPLETE" in action_input:
task = "END"
return action_name, action_input, history, task
else:
return action_name, action_input, history, task
else:
history += "{}\n".format(line)
#history += "observation: the following command did not produce any useful output: '{}', I need to check the commands syntax, or use a different command\n".format(line)
#return action_name, action_input, history, task
#assert False, "unknown action: {}".format(line)
return "MAIN", None, history, task
def call_set_task(purpose, task, history, directory, action_input):
task = run_gpt(
TASK_PROMPT,
stop_tokens=[],
max_tokens=64,
purpose=purpose,
task=task,
history=history,
).strip("\n")
history += "observation: task has been updated to: {}\n".format(task)
return "MAIN", None, history, task
def end_fn(purpose, task, history, directory, action_input):
task = "END"
return "COMPLETE", "COMPLETE", history, task
NAME_TO_FUNC = {
"MAIN": call_main,
"UPDATE-TASK": call_set_task,
"SEARCH": call_search,
"COMPLETE": end_fn,
}
def run_action(purpose, task, history, directory, action_name, action_input):
print(f'action_name::{action_name}')
try:
if "RESPONSE" in action_name or "COMPLETE" in action_name:
action_name="COMPLETE"
task="END"
return action_name, "COMPLETE", history, task
# compress the history when it is long
if len(history.split("\n")) > MAX_HISTORY:
if VERBOSE:
print("COMPRESSING HISTORY")
history = compress_history(purpose, task, history, directory)
if not action_name in NAME_TO_FUNC:
action_name="MAIN"
if action_name == "" or action_name == None:
action_name="MAIN"
assert action_name in NAME_TO_FUNC
print("RUN: ", action_name, action_input)
return NAME_TO_FUNC[action_name](purpose, task, history, directory, action_input)
except Exception as e:
history += "observation: the previous command did not produce any useful output, I need to check the commands syntax, or use a different command\n"
return "MAIN", None, history, task
def run(purpose,history):
#print(purpose)
#print(hist)
task=None
directory="./"
if history:
history=str(history).strip("[]")
if not history:
history = ""
action_name = "UPDATE-TASK" if task is None else "MAIN"
action_input = None
while True:
print("")
print("")
print("---")
print("purpose:", purpose)
print("task:", task)
print("---")
print(history)
print("---")
action_name, action_input, history, task = run_action(
purpose,
task,
history,
directory,
action_name,
action_input,
)
yield (history)
#yield ("",[(purpose,history)])
if task == "END":
return (history)
#return ("", [(purpose,history)])
################################################
def format_prompt(message, history):
prompt = ""
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response} "
prompt += f"[INST] {message} [/INST]"
return prompt
agents =[
"WEB_DEV",
"AI_SYSTEM_PROMPT",
"PYTHON_CODE_DEV"
]
def generate(
prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
seed = random.randint(1,1111111111111111)
agent=prompts.WEB_DEV
if agent_name == "WEB_DEV":
agent = prompts.WEB_DEV
if agent_name == "AI_SYSTEM_PROMPT":
agent = prompts.AI_SYSTEM_PROMPT
if agent_name == "PYTHON_CODE_DEV":
agent = prompts.PYTHON_CODE_DEV
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
additional_inputs=[
gr.Dropdown(
label="Agents",
choices=[s for s in agents],
value=agents[0],
interactive=True,
),
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=1048*10,
minimum=0,
maximum=1048*10,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
),
]
examples=[
["Create a basic Python web app using Flask.", None, None, None, None, None, ],
["Build a simple Streamlit app to display a data visualization.", None, None, None, None, None, ],
["I need a Gradio interface for a machine learning model that takes an image as input and outputs a classification.", None, None, None, None, None, ],
["Generate a Python script to scrape data from a website.", None, None, None, None, None, ],
["I'm building a React app. How can I use Axios to make API calls?", None, None, None, None, None, ],
["Write a Python function to read data from a CSV file.", None, None, None, None, None, ],
["I want to deploy my Flask app to Heroku.", None, None, None, None, None, ],
["Explain the difference between Git and GitHub.", None, None, None, None, None, ],
["How can I use Docker to containerize my Python app?", None, None, None, None, None, ],
["I need a simple API endpoint for my web app using Flask.", None, None, None, None, None, ],
["Create a function in Python to calculate the factorial of a number.", None, None, None, None, None, ],
]
'''
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B\nMicro-Agent\nInternet Search
development test",
examples=examples,
concurrency_limit=20,
with gr.Blocks() as ifacea:
gr.HTML("""TEST""")
ifacea.launch()
).launch()
with gr.Blocks() as iface:
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
chatbot=gr.Chatbot()
msg = gr.Textbox()
with gr.Row():
submit_b = gr.Button()
clear = gr.ClearButton([msg, chatbot])
submit_b.click(run, [msg,chatbot],[msg,chatbot])
msg.submit(run, [msg, chatbot], [msg, chatbot])
iface.launch()
'''
gr.ChatInterface(
fn=run,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Mixtral 46.7B\nMicro-Agent\nInternet Search
development test",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)
Implementation of Next Steps:
Terminal Integration:
Install Libraries: Install either streamlit-terminal or gradio-terminal depending on your chosen framework.
Integrate the Terminal: Use the library's functions to embed a terminal component within your Streamlit or Gradio app.
Capture Input: Capture the user's input from the terminal and pass it to your command execution function.
Display Output: Display the output of the terminal commands, including both standard output and errors.
Code Generation:
LLM Selection: Choose a Hugging Face Transformer model that is suitable for code generation (e.g., google/flan-t5-xl, Salesforce/codet5-base, microsoft/CodeGPT-small).
Prompt Engineering: Develop effective prompts for the LLM to generate code based on natural language instructions.
Code Translation Function: Create a function that takes natural language input, passes it to the LLM with the appropriate prompt, and then returns the generated code.
Code Correction: You can explore ways to automatically correct code errors, perhaps using a combination of syntax checking and LLM assistance.
Workspace Explorer:
Streamlit or Gradio Filesystem Access: Use Streamlit's st.file_uploader or Gradio's gr.File component to allow users to upload files.
File Management: Implement functions to create, edit, and delete files and directories within the workspace.
Display Files: Use Streamlit's st.code or Gradio's gr.File component to display the contents of files in the workspace.
Directory Structure: Display the directory structure of the workspace using a tree-like representation.
Dependency Management:
Package Installation: Create a function that takes a package name as input, installs it using pip, and updates the requirements.txt file.
Workspace Population: Develop a function to create files and directories in the workspace based on installed packages.
Application Build and Launch:
Build Logic: Develop a function to build the web app based on the user's code and dependencies.
Launch Functionality: Implement a mechanism to launch the built app.
Error Correction: Identify and correct errors during the build and launch process.
Automated Assistance: Provide automated assistance during the build and launch process, with a gradient slider to adjust the level of user override.
Recommendations, Enhancements, Optimizations, and Workflow:
1. LLM Selection for Code Generation:
* **Google/Flan-T5-XL:** Excellent for code generation, particularly for Python.
* **Salesforce/CodeT5-Base:** Strong for code generation, with a focus on code summarization and translation.
* **Microsoft/CodeGPT-Small:** A smaller model that is suitable for code generation tasks, especially if you have limited computational resources.
2. Prompt Engineering for Code Generation:
* **Contextual Prompts:** Provide the LLM with as much context as possible, including the desired programming language, libraries, and any specific requirements.
* **Code Snippets:** If possible, include code snippets as part of the prompt to guide the LLM's code generation.
* **Iterative Refinement:** Use iterative prompting to refine the generated code. Start with a basic prompt and then provide feedback to the LLM to improve the code.
3. Workspace Exploration:
* **Tree-Like View:** Use a tree-like representation to display the workspace's directory structure.
* **Search Functionality:** Implement a search bar to allow users to quickly find specific files or directories.
* **Code Highlighting:** Provide code highlighting for files in the workspace to improve readability.
4. Dependency Management:
* **Virtual Environments:** Use virtual environments to isolate project dependencies and prevent conflicts.
* **Automatic Updates:** Implement a mechanism to automatically update dependencies when new versions are available.
* **Dependency Locking:** Use tools like `pip-tools` or `poetry` to lock dependencies to specific versions, ensuring consistent builds.
5. Application Build and Launch:
* **Build Tool Integration:** Consider integrating a build tool like `poetry` or `pipenv` into your workflow to automate the build process.
* **Containerization:** Containerize the app using Docker to ensure consistent deployments across different environments.
* **Deployment Automation:** Explore tools like `Heroku`, `AWS Elastic Beanstalk`, or `Google App Engine` to automate the deployment process.
6. Automated Assistance:
* **Error Detection and Correction:** Implement a system that can detect common coding errors and suggest corrections.
* **Code Completion:** Use an LLM to provide code completion suggestions as the user types.