import gradio as gr import os import shutil import json import logging import utils from transformers import pipeline # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) FILE_DIR = os.path.dirname(os.path.abspath(__file__)) EXAMPLES_PATH = os.path.join(FILE_DIR, 'examples.json') OUTPUT_DIR = os.path.join(os.path.dirname(FILE_DIR), "auto_gpt_workspace") # Create output directory if it doesn't exist if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) # Custom CSS for styling CSS = """ #chatbot {font-family: monospace;} #files .generating {display: none;} #files .min {min-height: 0px;} """ # UI Components def get_api_key(): """Get Hugging Face API key input.""" return gr.Textbox(label="Hugging Face API Key", type="password") def get_ai_name(): """Get AI name input.""" return gr.Textbox(label="AI Name", placeholder="e.g. Entrepreneur-GPT") def get_ai_role(): """Get AI role input.""" return gr.Textbox(label="AI Role", placeholder="e.g. an AI designed to autonomously develop and run businesses with the sole goal of increasing your net worth.") def get_description(): """Get project description input.""" return gr.Textbox(label="Description", placeholder="Enter a brief description of the project.") def get_top_5_goals(): """Get top 5 goals input.""" return gr.Dataframe(row_count=(5, "fixed"), col_count=(1, "fixed"), headers=["AI Goals - Enter up to 5"], type="array") def get_example_values(): """Load example values from JSON file.""" try: with open(EXAMPLES_PATH, 'r', encoding='utf-8') as f: return json.load(f) except Exception as e: logger.error(f"Error loading examples: {e}") return [] def get_chatbot(): """Get chatbot UI element.""" return gr.Chatbot(elem_id="chatbot", type='messages') def get_yes_btn(): """Get Yes button.""" return gr.Button("Yes", variant="primary", interactive=False) def get_consecutive_yes(): """Get slider for consecutive yes count.""" return gr.Slider(1, 10, 1, step=1, label="Consecutive Yes", interactive=False) def get_custom_response(): """Get custom response input.""" return gr.Textbox(label="Custom Response", placeholder="Press 'Enter' to Submit.", interactive=False) def get_progress(): """Get progress bar.""" return gr.Progress() def get_generated_files(): """Get HTML element to display generated files.""" return gr.HTML(lambda: f"Generated Files
{utils.format_directory(OUTPUT_DIR)}
", every=3, elem_id="files") def get_download_btn(): """Get download all files button.""" return gr.Button("Download All Files") def get_inferred_tasks(): """Get inferred tasks textbox.""" return gr.Textbox(label="Inferred Tasks", interactive=False) class AutoAPI: def __init__(self, huggingface_key, ai_name, ai_role, top_5_goals): self.huggingface_key = huggingface_key self.ai_name = ai_name self.ai_role = ai_role self.top_5_goals = top_5_goals def infer_tasks(self, description): # Placeholder for actual task inference logic # Simulate task inference based on the description tasks = [] # Define keywords and corresponding tasks keyword_tasks = { "business": ["Analyze market trends", "Create business plan"], "technology": ["Research latest technology", "Prototype development"], "startup": ["Identify target audience", "Develop marketing strategy"], "product": ["Design product", "Test product"], "finance": ["Budget planning", "Financial forecasting"], "team": ["Recruit team members", "Team building activities"], "strategy": ["Develop strategic plan", "Set milestones"] } # Split the description into words and check for keywords words = description.lower().split() for keyword, task_list in keyword_tasks.items(): if any(keyword in word for word in words): tasks.extend(task_list) # Ensure the list always has 5 tasks while len(tasks) < 5: tasks.append(f"Generic Task {len(tasks) + 1}") return tasks def start(huggingface_key, ai_name, ai_role, top_5_goals, description): """Start AutoAPI and infer tasks.""" try: from api import AutoAPI auto_api = AutoAPI(huggingface_key, ai_name, ai_name, ai_role, top_5_goals) logger.info("AutoAPI started with AI Name: %s, AI Role: %s", ai_name, ai_role) # Infer tasks based on the role and description tasks = auto_api.infer_tasks(description) logger.info("Inferred tasks: %s", tasks) return gr.Column.update(visible=False), gr.Column.update(visible=True), auto_api, gr.update(value=tasks) except Exception as e: logger.error("Failed to start AutoAPI: %s", str(e)) return gr.Column.update(visible=True), gr.Column.update(visible=False), None, gr.update(value=[]) # Main Gradio Interface with gr.Blocks(css=CSS) as demo: gr.Markdown("# AutoGPT Task Inference") with gr.Row(): api_key = get_api_key() ai_name = get_ai_name() ai_role = get_ai_role() description = get_description() top_5_goals = get_top_5_goals() start_btn = gr.Button("Start") main_pane = gr.Column(visible=False) setup_pane = gr.Column(visible=True) inferred_tasks = get_inferred_tasks() start_btn.click( start, inputs=[api_key, ai_name, ai_role, top_5_goals, description], outputs=[setup_pane, main_pane, inferred_tasks] ) with main_pane: get_generated_files() get_download_btn() # Launch the Gradio app if __name__ == "__main__": demo.launch()