import os import subprocess import random import json from datetime import datetime import gradio as gr # Corrected import for gradio class App(gr.Blocks): # Corrected class inheritance def __init__(self): super().__init__() self.app_state = {"components": []} self.terminal_history = "" self.components_registry = { "Button": { "properties": { "label": "Click Me", "onclick": "" }, "description": "A clickable button", "code_snippet": "gr.Button(value='{{label}}', variant='primary')" }, # ... Other component definitions } self.nlp_model_names = [ "google/flan-t5-small", # ... Other NLP model names ] self.nlp_models = [] # self.initialize_nlp_models() # Moved to run() for Gradio self.exited = False # Add the missing attribute def initialize_nlp_models(self): for nlp_model_name in self.nlp_model_names: try: # Assuming the use of transformers library for NLP models from transformers import pipeline model = pipeline('text-generation', model=nlp_model_name) self.nlp_models.append(model) except Exception as e: print(f"Failed to load model {nlp_model_name}: {e}") self.nlp_models.append(None) def get_nlp_response(self, input_text, model_index): if self.nlp_models[model_index]: response = self.nlp_models[model_index](input_text) return response[0]['generated_text'] else: return "NLP model not available." class Component: def __init__(self, type, properties=None, id=None): self.type = type self.properties = properties or {} self.id = id or f"{type}_{random.randint(1000, 9999)}" def to_dict(self): return { "type": self.type, "properties": self.properties, "id": self.id } def render(self): code_snippet = self.properties.get("code_snippet", "") for key, value in self.properties.items(): code_snippet = code_snippet.replace(f"{{{{{key}}}}}", str(value)) return code_snippet def update_app_canvas(self): code = "" for component in self.app_state["components"]: code += component.render() + "\n" return code def add_component(self, component_type): if component_type in self.components_registry: component = self.Component( type=component_type, properties=self.components_registry[component_type]["properties"] ) self.app_state["components"].append(component) # self.update_app_canvas() # Updated to return code else: print(f"Component type {component_type} not found in registry.") def run_terminal_command(self, command, history): try: result = subprocess.run(command, shell=True, capture_output=True, text=True) history += result.stdout + result.stderr return history except Exception as e: return str(e) def compress_history(self, history): lines = history.split('\\n') compressed_lines = [line for line in lines if not line.strip().startswith('#')] return '\\n'.join(compressed_lines) def understand_test_results(self, test_results): # Placeholder for understanding test results return "Test results understood." def get_help_message(self): return "Available commands: add_component, run_terminal_command, compress_history, understand_test_results, get_help_message" def process_input(self, input_text): if input_text.startswith("add_component"): _, component_type = input_text.split() self.add_component(component_type) return self.update_app_canvas() # Return updated code elif input_text.startswith("run_terminal_command"): _, command = input_text.split(maxsplit=1) self.terminal_history = self.run_terminal_command(command, self.terminal_history) return self.terminal_history elif input_text.startswith("compress_history"): self.terminal_history = self.compress_history(self.terminal_history) return self.terminal_history elif input_text.startswith("understand_test_results"): _, test_results = input_text.split(maxsplit=1) return self.understand_test_results(test_results) elif input_text == "get_help_message": return self.get_help_message() else: return "Unknown command. Type 'get_help_message' for available commands." def run(self): self.initialize_nlp_models() # Initialize NLP models here with gr.Blocks() as demo: input_text = gr.Textbox(label="Enter your command:") output_text = gr.Textbox(label="Output:") btn = gr.Button("Run") btn.click(self.process_input, inputs=[input_text], outputs=[output_text]) demo.launch() if __name__ == "__main__": app = App() app.run()