from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM from huggingface_hub import HfApi import re from typing import List, Dict import subprocess import os import black from pylint import lint from io import StringIO import sys class TextGenerationTool: def __init__(self, llm: str): self.llm = llm self.tokenizer = AutoTokenizer.from_pretrained(llm) self.model = AutoModelForCausalLM.from_pretrained(llm) def generate_text(self, prompt: str, max_length: int = 50) -> str: inputs = self.tokenizer(prompt, return_tensors="pt") outputs = self.model.generate(**inputs, max_length=max_length) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) class AIAgent: def __init__(self, name: str, description: str, skills: List[str], llm: str): self.name = name self.description = description self.skills = skills self.text_gen_tool = TextGenerationTool(llm) self._hf_api = HfApi() # Initialize HfApi here def generate_agent_response(self, prompt: str) -> str: return self.text_gen_tool.generate_text(prompt) def create_agent_prompt(self) -> str: skills_str = '\n'.join([f"* {skill}" for skill in self.skills]) agent_prompt = f""" As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas: {skills_str} I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter. """ return agent_prompt def autonomous_build(self, chat_history: List[tuple[str, str]], workspace_projects: Dict[str, Dict], project_name: str, selected_model: str, hf_token: str) -> tuple[str, str]: summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) next_step = "Based on the current state, the next logical step is to implement the main application logic." return summary, next_step def deploy_built_space_to_hf(self, project_name: str) -> str: space_content = generate_space_content(project_name) repository = self._hf_api.create_repo( repo_id=project_name, private=True, token=hf_token, exist_ok=True, space_sdk="streamlit" ) self._hf_api.upload_file( path_or_fileobj=space_content, path_in_repo="app.py", repo_id=project_name, repo_type="space", token=hf_token ) return repository.name def has_valid_hf_token(self) -> bool: return self._hf_api.whoami(token=hf_token) is not None def process_input(input_text: str) -> str: chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium", tokenizer="microsoft/DialoGPT-medium", clean_up_tokenization_spaces=True) response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text'] return response def run_code(code: str) -> str: try: result = subprocess.run(code, shell=True, capture_output=True, text=True) return result.stdout except Exception as e: return str(e) def workspace_interface(project_name: str) -> str: project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): os.makedirs(project_path) st.session_state.workspace_projects[project_name] = {'files': []} return f"Project '{project_name}' created successfully." else: return f"Project '{project_name}' already exists." def add_code_to_workspace(project_name: str, code: str, file_name: str) -> str: project_path = os.path.join(PROJECT_ROOT, project_name) if not os.path.exists(project_path): return f"Project '{project_name}' does not exist." file_path = os.path.join(project_path, file_name) with open(file_path, "w") as file: file.write(code) st.session_state.workspace_projects[project_name]['files'].append(file_name) return f"Code added to '{file_name}' in project '{project_name}'." def display_chat_history(chat_history: List[tuple[str, str]]) -> str: return "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history]) def display_workspace_projects(workspace_projects: Dict[str, Dict]) -> str: return "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()]) def generate_space_content(project_name: str) -> str: # Logic to generate the Streamlit app content based on project_name # ... (This is where you'll need to implement the actual code generation) return "import streamlit as st\nst.title('My Streamlit App')\nst.write('Hello, world!')" def analyze_code(code: str) -> List[str]: hints = [] # Example pointer: Suggest using list comprehensions if re.search(r'for .* in .*:\n\s+.*\.append\(', code): hints.append("Consider using a list comprehension instead of a loop for appending to a list.") # Example pointer: Recommend using f-strings for string formatting if re.search(r'\".*\%s\"|\'.*\%s\'', code) or re.search(r'\".*\%d\"|\'.*\%d\'', code): hints.append("Consider using f-strings for cleaner and more efficient string formatting.") # Example pointer: Avoid using global variables if re.search(r'\bglobal\b', code): hints.append("Avoid using global variables. Consider passing parameters or using classes.") # Example pointer: Recommend using `with` statement for file operations if re.search(r'open\(.+\)', code) and not re.search(r'with open\(.+\)', code): hints.append("Consider using the `with` statement when opening files to ensure proper resource management.") return hints def get_code_completion(prompt: str) -> str: # Generate code completion based on the current code input # Use max_new_tokens instead of max_length completions = code_generator(prompt, max_new_tokens=50, num_return_sequences=1) return completions[0]['generated_text'] def lint_code(code: str) -> List[str]: # Capture pylint output pylint_output = StringIO() sys.stdout = pylint_output # Run pylint on the provided code lint.Run(['--from-stdin'], do_exit=False, input=code) # Reset stdout sys.stdout = sys.__stdout__ # Extract pylint messages messages = pylint_output.getvalue().splitlines() return messages def format_code(code: str) -> str: # Format code using Black formatted_code = black.format_str(code, mode=black.FileMode()) return formatted_code