import gradio as gr from fastai.vision.all import * learn = load_learner(fname='pet_breeds.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Pet Breed Classifier" description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." article = "
" examples = ["chihuahua.jpg", "siamese.jpg"] gr.Interface(fn=predict, inputs=gr.Image(height=512, width=512), outputs=gr.Label(num_top_classes=3), title=title, description=description, article=article, examples=examples).launch()