from yacs.config import CfgNode as CN # Set default hparams to construct new default config # Make sure the defaults are same as in parser hparams = CN() # General settings hparams.EXP_NAME = 'default' hparams.PROJECT_NAME = 'default' hparams.OUTPUT_DIR = 'deco_results/' hparams.CONDOR_DIR = '/is/cluster/work/achatterjee/condor/rich/' hparams.LOGDIR = '' # Dataset hparams hparams.DATASET = CN() hparams.DATASET.BATCH_SIZE = 64 hparams.DATASET.NUM_WORKERS = 4 hparams.DATASET.NORMALIZE_IMAGES = True # Optimizer hparams hparams.OPTIMIZER = CN() hparams.OPTIMIZER.TYPE = 'adam' hparams.OPTIMIZER.LR = 5e-5 hparams.OPTIMIZER.NUM_UPDATE_LR = 10 # Training hparams hparams.TRAINING = CN() hparams.TRAINING.ENCODER = 'hrnet' hparams.TRAINING.CONTEXT = True hparams.TRAINING.NUM_EPOCHS = 50 hparams.TRAINING.SUMMARY_STEPS = 100 hparams.TRAINING.CHECKPOINT_EPOCHS = 5 hparams.TRAINING.NUM_EARLY_STOP = 10 hparams.TRAINING.DATASETS = ['rich'] hparams.TRAINING.DATASET_MIX_PDF = ['1.'] hparams.TRAINING.DATASET_ROOT_PATH = '/is/cluster/work/achatterjee/rich/npzs' hparams.TRAINING.BEST_MODEL_PATH = '/is/cluster/work/achatterjee/weights/rich/exp/rich_exp.pth' hparams.TRAINING.LOSS_WEIGHTS = 1. hparams.TRAINING.PAL_LOSS_WEIGHTS = 1. # Training hparams hparams.VALIDATION = CN() hparams.VALIDATION.SUMMARY_STEPS = 100 hparams.VALIDATION.DATASETS = ['rich'] hparams.VALIDATION.MAIN_DATASET = 'rich'