import torch from torch.utils.data import DataLoader from loguru import logger from train.trainer_step import TrainStepper from train.base_trainer import evaluator from data.base_dataset import BaseDataset from models.deco import DECO from utils.config import parse_args, run_grid_search_experiments def test(hparams): deco_model = DECO(hparams.TRAINING.ENCODER, hparams.TRAINING.CONTEXT, device) pytorch_total_params = sum(p.numel() for p in deco_model.parameters() if p.requires_grad) print('Total number of trainable parameters: ', pytorch_total_params) solver = TrainStepper(deco_model, hparams.TRAINING.CONTEXT, hparams.OPTIMIZER.LR, hparams.TRAINING.LOSS_WEIGHTS, hparams.TRAINING.PAL_LOSS_WEIGHTS, device) logger.info(f'Loading weights from {hparams.TRAINING.BEST_MODEL_PATH}') _, _ = solver.load(hparams.TRAINING.BEST_MODEL_PATH) # Run testing for test_loader in val_loaders: dataset_name = test_loader.dataset.dataset test_dict, total_time = evaluator(test_loader, solver, hparams, 0, dataset_name, return_dict=True) print('Test Contact Precision: ', test_dict['cont_precision']) print('Test Contact Recall: ', test_dict['cont_recall']) print('Test Contact F1 Score: ', test_dict['cont_f1']) print('Test Contact FP Geo. Error: ', test_dict['fp_geo_err']) print('Test Contact FN Geo. Error: ', test_dict['fn_geo_err']) if hparams.TRAINING.CONTEXT: print('Test Contact Semantic Segmentation IoU: ', test_dict['sem_iou']) print('Test Contact Part Segmentation IoU: ', test_dict['part_iou']) print('\nTime taken per image for evaluation: ', total_time) print('-'*50) if __name__ == '__main__': args = parse_args() hparams = run_grid_search_experiments( args, script='tester.py', change_wt_name=False ) if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') val_datasets = [] for ds in hparams.VALIDATION.DATASETS: if ds in ['rich', 'prox']: val_datasets.append(BaseDataset(ds, 'val', model_type='smplx', normalize=hparams.DATASET.NORMALIZE_IMAGES)) elif ds in ['damon']: val_datasets.append(BaseDataset(ds, 'val', model_type='smpl', normalize=hparams.DATASET.NORMALIZE_IMAGES)) else: raise ValueError('Dataset not supported') val_loaders = [DataLoader(val_dataset, batch_size=hparams.DATASET.BATCH_SIZE, shuffle=False, num_workers=hparams.DATASET.NUM_WORKERS) for val_dataset in val_datasets] test(hparams)