import math import numpy as np import torch import torch.nn as nn from torch.nn import functional as F import torchvision.models.resnet as resnet def rot6d_to_rotmat(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ x = x.view(-1,3,2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) class Bottleneck(nn.Module): """ Redefinition of Bottleneck residual block Adapted from the official PyTorch implementation """ expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class HMR(nn.Module): """ SMPL Iterative Regressor with ResNet50 backbone """ def __init__(self, block, layers, smpl_mean_params): self.inplanes = 64 super(HMR, self).__init__() npose = 24 * 6 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc1 = nn.Linear(512 * block.expansion + npose + 13, 1024) self.drop1 = nn.Dropout() self.fc2 = nn.Linear(1024, 1024) self.drop2 = nn.Dropout() self.decpose = nn.Linear(1024, npose) self.decshape = nn.Linear(1024, 10) self.deccam = nn.Linear(1024, 3) nn.init.xavier_uniform_(self.decpose.weight, gain=0.01) nn.init.xavier_uniform_(self.decshape.weight, gain=0.01) nn.init.xavier_uniform_(self.deccam.weight, gain=0.01) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() mean_params = np.load(smpl_mean_params) init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0) init_shape = torch.from_numpy(mean_params['shape'][:].astype('float32')).unsqueeze(0) init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0) self.register_buffer('init_pose', init_pose) self.register_buffer('init_shape', init_shape) self.register_buffer('init_cam', init_cam) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x, init_pose=None, init_shape=None, init_cam=None, n_iter=3): batch_size = x.shape[0] if init_pose is None: init_pose = self.init_pose.expand(batch_size, -1) if init_shape is None: init_shape = self.init_shape.expand(batch_size, -1) if init_cam is None: init_cam = self.init_cam.expand(batch_size, -1) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x1 = self.layer1(x) x2 = self.layer2(x1) x3 = self.layer3(x2) x4 = self.layer4(x3) xf = self.avgpool(x4) xf = xf.view(xf.size(0), -1) pred_pose = init_pose pred_shape = init_shape pred_cam = init_cam for i in range(n_iter): xc = torch.cat([xf, pred_pose, pred_shape, pred_cam],1) xc = self.fc1(xc) xc = self.drop1(xc) xc = self.fc2(xc) xc = self.drop2(xc) pred_pose = self.decpose(xc) + pred_pose pred_shape = self.decshape(xc) + pred_shape pred_cam = self.deccam(xc) + pred_cam pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, 24, 3, 3) return pred_rotmat, pred_shape, pred_cam def hmr(smpl_mean_params, pretrained=True, **kwargs): """ Constructs an HMR model with ResNet50 backbone. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = HMR(Bottleneck, [3, 4, 6, 3], smpl_mean_params, **kwargs) if pretrained: resnet_imagenet = resnet.resnet50(pretrained=True) model.load_state_dict(resnet_imagenet.state_dict(),strict=False) return model