import os import random import autocuda from pyabsa.utils.pyabsa_utils import fprint from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionPipeline, StableDiffusionImg2ImgPipeline, \ DPMSolverMultistepScheduler import gradio as gr import torch from PIL import Image import utils import datetime import time import psutil from Waifu2x.magnify import ImageMagnifier magnifier = ImageMagnifier() start_time = time.time() is_colab = utils.is_google_colab() CUDA_VISIBLE_DEVICES = '' device = autocuda.auto_cuda() dtype = torch.float16 if device != 'cpu' else torch.float32 class Model: def __init__(self, name, path="", prefix=""): self.name = name self.path = path self.prefix = prefix self.pipe_t2i = None self.pipe_i2i = None models = [ Model("anything v3", "Linaqruf/anything-v3.0", "anything v3 style"), ] # Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "), # Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "), # Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "), # Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ") # Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""), # Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""), # Model("Robo Diffusion", "nousr/robo-diffusion", ""), scheduler = DPMSolverMultistepScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, trained_betas=None, predict_epsilon=True, thresholding=False, algorithm_type="dpmsolver++", solver_type="midpoint", lower_order_final=True, ) custom_model = None if is_colab: models.insert(0, Model("Custom model")) custom_model = models[0] last_mode = "txt2img" current_model = models[1] if is_colab else models[0] current_model_path = current_model.path if is_colab: pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=dtype, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False)) else: # download all models print(f"{datetime.datetime.now()} Downloading vae...") vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=dtype) for model in models: try: print(f"{datetime.datetime.now()} Downloading {model.name} model...") unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=dtype) model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=dtype, scheduler=scheduler, safety_checker=None) model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=dtype, scheduler=scheduler, safety_checker=None) except Exception as e: print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e)) models.remove(model) pipe = models[0].pipe_t2i # model.pipe_i2i = torch.compile(model.pipe_i2i) # model.pipe_t2i = torch.compile(model.pipe_t2i) if torch.cuda.is_available(): pipe = pipe.to(device) # device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶" def error_str(error, title="Error"): return f"""#### {title} {error}""" if error else "" def custom_model_changed(path): models[0].path = path global current_model current_model = models[0] def on_model_change(model_name): prefix = "Enter prompt. \"" + next((m.prefix for m in models if m.name == model_name), None) + "\" is prefixed automatically" if model_name != models[ 0].name else "Don't forget to use the custom model prefix in the prompt!" return gr.update(visible=model_name == models[0].name), gr.update(placeholder=prefix) def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt="", scale_factor=2): fprint(psutil.virtual_memory()) # print memory usage prompt = 'detailed fingers, beautiful hands,' + prompt fprint(f"Prompt: {prompt}") global current_model for model in models: if model.name == model_name: current_model = model model_path = current_model.path generator = torch.Generator(device).manual_seed(seed) if seed != 0 else None try: if img is not None: return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator, scale_factor), None else: return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, scale_factor), None except Exception as e: return None, error_str(e) # if img is not None: # return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, # generator, scale_factor), None # else: # return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, scale_factor), None def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator, scale_factor): print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}") global last_mode global pipe global current_model_path if model_path != current_model_path or last_mode != "txt2img": current_model_path = model_path if is_colab or current_model == custom_model: pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=dtype, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False)) else: # pipe = pipe.to("cpu") pipe = current_model.pipe_t2i if torch.cuda.is_available(): pipe = pipe.to(device) last_mode = "txt2img" prompt = current_model.prefix + prompt result = pipe( prompt, negative_prompt=neg_prompt, # num_images_per_prompt=n_images, num_inference_steps=int(steps), guidance_scale=guidance, width=width, height=height, generator=generator) result.images[0] = magnifier.magnify(result.images[0], scale_factor=scale_factor) # save image result.images[0].save("imgs/result-{}.png".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))) return replace_nsfw_images(result) def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator, scale_factor): fprint(f"{datetime.datetime.now()} img_to_img, model: {model_path}") global last_mode global pipe global current_model_path if model_path != current_model_path or last_mode != "img2img": current_model_path = model_path if is_colab or current_model == custom_model: pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=dtype, scheduler=scheduler, safety_checker=lambda images, clip_input: ( images, False)) else: # pipe = pipe.to("cpu") pipe = current_model.pipe_i2i if torch.cuda.is_available(): pipe = pipe.to(device) last_mode = "img2img" prompt = current_model.prefix + prompt ratio = min(height / img.height, width / img.width) img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS) result = pipe( prompt, negative_prompt=neg_prompt, # num_images_per_prompt=n_images, image=img, num_inference_steps=int(steps), strength=strength, guidance_scale=guidance, # width=width, # height=height, generator=generator) result.images[0] = magnifier.magnify(result.images[0], scale_factor=scale_factor) # save image result.images[0].save("imgs/result-{}.png".format(datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))) return replace_nsfw_images(result) def replace_nsfw_images(results): if is_colab: return results.images[0] if hasattr(results, "nsfw_content_detected") and results.nsfw_content_detected: for i in range(len(results.images)): if results.nsfw_content_detected[i]: results.images[i] = Image.open("nsfw.png") return results.images[0] css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem} """ with gr.Blocks(css=css) as demo: if not os.path.exists('imgs'): os.mkdir('imgs') gr.Markdown('# Super Resolution Anime Diffusion') gr.Markdown( "## Author: [yangheng95](https://github.com/yangheng95) Github:[Github](https://github.com/yangheng95/SuperResolutionAnimeDiffusion)") gr.Markdown("### This demo is running on a CPU, so it will take at least 20 minutes. " "If you have a GPU, you can clone from [Github](https://github.com/yangheng95/SuperResolutionAnimeDiffusion) and run it locally.") gr.Markdown("### FYI: to generate a 512*512 image and magnify 4x, it only takes 5~8 seconds on a RTX 2080 GPU") gr.Markdown( "### You can duplicate this demo on HuggingFace Spaces, click [here](https://huggingface.co/spaces/yangheng/Super-Resolution-Anime-Diffusion?duplicate=true)") with gr.Row(): with gr.Column(scale=55): with gr.Group(): gr.Markdown("Text to image") model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name) with gr.Box(visible=False) as custom_model_group: custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True) gr.HTML( "