# Copyright (c) 2023, Zexin He # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn class BasicTransformerBlock(nn.Module): """ Transformer block that takes in a cross-attention condition and another modulation vector applied to sub-blocks. """ # use attention from torch.nn.MultiHeadAttention # Block contains a cross-attention layer, a self-attention layer, and a MLP def __init__( self, inner_dim: int, cond_dim: int, num_heads: int, eps: float, attn_drop: float = 0., attn_bias: bool = False, mlp_ratio: float = 4., mlp_drop: float = 0., ): super().__init__() self.norm1 = nn.LayerNorm(inner_dim) self.cross_attn = nn.MultiheadAttention( embed_dim=inner_dim, num_heads=num_heads, kdim=cond_dim, vdim=cond_dim, dropout=attn_drop, bias=attn_bias, batch_first=True) self.norm2 = nn.LayerNorm(inner_dim) self.self_attn = nn.MultiheadAttention( embed_dim=inner_dim, num_heads=num_heads, dropout=attn_drop, bias=attn_bias, batch_first=True) self.norm3 = nn.LayerNorm(inner_dim) self.mlp = nn.Sequential( nn.Linear(inner_dim, int(inner_dim * mlp_ratio)), nn.GELU(), nn.Dropout(mlp_drop), nn.Linear(int(inner_dim * mlp_ratio), inner_dim), nn.Dropout(mlp_drop), ) def forward(self, x, cond): # x: [N, L, D] # cond: [N, L_cond, D_cond] x = x + self.cross_attn(self.norm1(x), cond, cond)[0] before_sa = self.norm2(x) x = x + self.self_attn(before_sa, before_sa, before_sa)[0] x = x + self.mlp(self.norm3(x)) return x class TriplaneTransformer(nn.Module): """ Transformer with condition that generates a triplane representation. Reference: Timm: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L486 """ def __init__( self, inner_dim: int, image_feat_dim: int, triplane_low_res: int, triplane_high_res: int, triplane_dim: int, num_layers: int, num_heads: int, eps: float = 1e-6, ): super().__init__() # attributes self.triplane_low_res = triplane_low_res self.triplane_high_res = triplane_high_res self.triplane_dim = triplane_dim # modules # initialize pos_embed with 1/sqrt(dim) * N(0, 1) self.pos_embed = nn.Parameter(torch.randn(1, 3*triplane_low_res**2, inner_dim) * (1. / inner_dim) ** 0.5) self.layers = nn.ModuleList([ BasicTransformerBlock( inner_dim=inner_dim, cond_dim=image_feat_dim, num_heads=num_heads, eps=eps) for _ in range(num_layers) ]) self.norm = nn.LayerNorm(inner_dim, eps=eps) self.deconv = nn.ConvTranspose2d(inner_dim, triplane_dim, kernel_size=2, stride=2, padding=0) def forward(self, image_feats): # image_feats: [N, L_cond, D_cond] N = image_feats.shape[0] H = W = self.triplane_low_res L = 3 * H * W x = self.pos_embed.repeat(N, 1, 1) # [N, L, D] for layer in self.layers: x = layer(x, image_feats) x = self.norm(x) # separate each plane and apply deconv x = x.view(N, 3, H, W, -1) x = torch.einsum('nihwd->indhw', x) # [3, N, D, H, W] x = x.contiguous().view(3*N, -1, H, W) # [3*N, D, H, W] x = self.deconv(x) # [3*N, D', H', W'] x = x.view(3, N, *x.shape[-3:]) # [3, N, D', H', W'] x = torch.einsum('indhw->nidhw', x) # [N, 3, D', H', W'] x = x.contiguous() return x