import json import sagemaker import boto3 from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='Moh-work')['Role']['Arn'] # Hub Model configuration. https://huggingface.co/models hub = { 'HF_MODEL_ID':'WizardLM/WizardMath-7B-V1.0', 'SM_NUM_GPUS': json.dumps(1) } # create Hugging Face Model Class huggingface_model = HuggingFaceModel( image_uri=get_huggingface_llm_image_uri("huggingface",version="1.0.3"), env=hub, role=role, ) # deploy model to SageMaker Inference predictor = huggingface_model.deploy( initial_instance_count=1, instance_type="ml.g5.2xlarge", container_startup_health_check_timeout=300, ) # send request predictor.predict({ "inputs": "create an E-Commernce platform in Next.js 13", }) predictor.delete_endpoint()