import json import torch import gradio as gr import onnxruntime as rt from transformers import AutoTokenizer with open("encoded_categories.json", "r") as file: categories_encoding = json.load(file) categories = list(categories_encoding.keys()) tokenizer = AutoTokenizer.from_pretrained("distilroberta-base") inf_session = rt.InferenceSession('models/manuscript-matcher-quantized.onnx') input_name = inf_session.get_inputs()[0].name output_name = inf_session.get_outputs()[0].name def classify_journal_category(text): input_ids = tokenizer(text)['input_ids'][:512] logits = inf_session.run([output_name], {input_name: [input_ids]})[0] logits = torch.FloatTensor(logits) probs = torch.sigmoid(logits)[0] return dict(zip(categories, map(float, probs))) label = gr.outputs.Label(num_top_classes=5) title = "Manuscript Matcher" description = "

This is a demo to classify research articles based on the abstract.

" iface = gr.Interface(fn=classify_journal_category, inputs="text", outputs=label, title=title, description=description, ) iface.launch(inline=False)