from PIL import Image import tensorflow import gradio as gr import numpy as np from tensorflow.keras.models import load_model import tensorflow as tf model = load_model('model') print(model) def infer(img): cartoonGAN = model.signatures["serving_default"] img = np.array(img.convert("RGB")) img = np.expand_dims(img, 0).astype(np.float32) / 127.5 - 1 out = cartoonGAN(tf.constant(img))['output_1'] out = ((out.numpy().squeeze() + 1) * 127.5).astype(np.uint8) return out title = "CartoonGAN" description = "Gradio Demo for CartoonGAN. To use it, simply upload an image." article = "
samples from repo:
" examples=[['ny_street.jpg'],['husky_study.jpg'],['tube_london.jpg'],['monalisa.jpg'],['dog-sleepy.gif'],['japan_fuji.jpg']] gr.Interface(infer, gr.inputs.Image(type="pil"), gr.outputs.Image(type="pil"), title=title,description=description,article=article,enable_queue=True,examples=examples).launch(share=True)