from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import gradio as gr tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/bart-large-cnn") def text_summarize(article): inputs = tokenizer(article, return_tensors = 'pt') output = model.generate(inputs.input_ids, max_new_tokens = 200, do_sample = True, top_p = 0.9, top_k = 50) output_text = tokenizer.decode(output[0], skip_special_tokens=True) return output_text iface = gr.Interface( fn = text_summarize, inputs = gr.Textbox(label = "Article", lines = 8, placeholder = "Paste your text here.."), outputs = gr.Textbox(label = "Summarized Text", lines = 5) ) iface.launch()