# A simplified version of the original code - https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition import torch.nn as nn import torch import numpy as np class dropout_layer(nn.Module): def __init__(self,device): super(dropout_layer, self).__init__() self.device = device def forward(self, input): nums = (np.random.rand(input.shape[1]) > 0.2).astype (int) dummy_array_output = torch.from_numpy(nums).to(self.device) dummy_array_output_t = torch.reshape(dummy_array_output, (input.shape[1], 1)).to(self.device) #Transpose dummy_array_output_f = dummy_array_output_t.repeat(input.shape[0], 1,input.shape[2]).to(self.device) #Same size as input output = input*dummy_array_output_f #element-wise multiplication return output