import streamlit as st
import sparknlp
import os
import pandas as pd
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline
from sparknlp.pretrained import PretrainedPipeline
from annotated_text import annotated_text
# Page configuration
st.set_page_config(
layout="wide",
initial_sidebar_state="auto"
)
# CSS for styling
st.markdown("""
""", unsafe_allow_html=True)
@st.cache_resource
def init_spark():
return sparknlp.start()
@st.cache_resource
def create_pipeline(model):
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl", "xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
if model == 'xlm_roberta_large_token_classifier_masakhaner':
tokenClassifier = XlmRoBertaForTokenClassification.pretrained("xlm_roberta_large_token_classifier_masakhaner", "xx")\
.setInputCols(["sentence",'token'])\
.setOutputCol("ner")
else:
tokenClassifier = DistilBertForTokenClassification.pretrained("distilbert_base_token_classifier_masakhaner", "xx")\
.setInputCols(["sentence",'token'])\
.setOutputCol("ner")
nlpPipeline = Pipeline(stages=[documentAssembler, sentenceDetector, tokenizer, tokenClassifier, ner_converter])
return nlpPipeline
def fit_data(pipeline, data):
empty_df = spark.createDataFrame([['']]).toDF('text')
pipeline_model = pipeline.fit(empty_df)
model = LightPipeline(pipeline_model)
result = model.fullAnnotate(data)
return result
def annotate(data):
document, chunks, labels = data["Document"], data["NER Chunk"], data["NER Label"]
annotated_words = []
for chunk, label in zip(chunks, labels):
parts = document.split(chunk, 1)
if parts[0]:
annotated_words.append(parts[0])
annotated_words.append((chunk, label))
document = parts[1]
if document:
annotated_words.append(document)
annotated_text(*annotated_words)
# Set up the page layout
st.markdown('
Recognize entities in 10 African languages
', unsafe_allow_html=True)
st.markdown("""
This model carries out Name Entity Recognition on 10 African languages (Amharic, Hausa, Igbo, Kinyarwanda, Luganda, Nigerian, Pidgin, Swahilu, Wolof, and Yorùbá).
""", unsafe_allow_html=True)
# Sidebar content
model = st.sidebar.selectbox(
"Choose the pretrained model",
["xlm_roberta_large_token_classifier_masakhaner", "distilbert_base_token_classifier_masakhaner"],
help="For more info about the models visit: https://sparknlp.org/models"
)
language = st.sidebar.selectbox(
"Choose the pretrained model",
["Amharic", "Hausa", "Igbo", "Kinyarwanda", "Luganda", "Nigerian", "Pidgin", "Swahilu", "Wolof", "Yorùbá"],
help="For more info about the models visit: https://sparknlp.org/models"
)
try:
labels_set = set()
for i in results['NER Chunk'].values:
labels_set.add(results["NER Label"][i])
labels_set = list(labels_set)
labels = st.sidebar.multiselect("Entity labels", options=labels_set, default=list(labels_set))
NER_labs = ['PER', 'ORG', 'LOC', 'DATE']
NER_exp = ['People, including fictional.', 'Companies, agencies, institutions, etc.', 'Countries, cities, states.', 'Date, Year']
NER_dict = dict(zip(NER_labs, NER_exp))
show_exp = st.sidebar.checkbox("Explain NER Labels", value=True)
if show_exp:
t_ner_k = []
t_ner_v = []
for t_lab in labels_set:
if t_lab in NER_dict:
t_ner_k.append(t_lab)
t_ner_v.append(NER_dict[t_lab])
tdf = pd.DataFrame({"NER": t_ner_k, "Meaning": t_ner_v})
tdf.index=['']*len(t_ner_k)
st.sidebar.table(tdf)
except:
pass
# Reference notebook link in sidebar
link = """
"""
st.sidebar.markdown('Reference notebook:')
st.sidebar.markdown(link, unsafe_allow_html=True)
# Load examples
folder_path = f"inputs/{language}"
examples = [
lines[1].strip()
for filename in os.listdir(folder_path)
if filename.endswith('.txt')
for lines in [open(os.path.join(folder_path, filename), 'r', encoding='utf-8').readlines()]
if len(lines) >= 2
]
selected_text = st.selectbox("Select an example", examples)
custom_input = st.text_input("Try it with your own Sentence!")
text_to_analyze = custom_input if custom_input else selected_text
st.subheader('Full example text')
HTML_WRAPPER = """{}
"""
st.markdown(HTML_WRAPPER.format(text_to_analyze), unsafe_allow_html=True)
# Initialize Spark and create pipeline
spark = init_spark()
pipeline = create_pipeline(model)
output = fit_data(pipeline, text_to_analyze)
# Display matched sentence
st.subheader("Processed output:")
results = {
'Document': output[0]['document'][0].result,
'NER Chunk': [n.result for n in output[0]['ner_chunk']],
"NER Label": [n.metadata['entity'] for n in output[0]['ner_chunk']]
}
annotate(results)
with st.expander("View DataFrame"):
df = pd.DataFrame({'NER Chunk': results['NER Chunk'], 'NER Label': results['NER Label']})
df.index += 1
st.dataframe(df)