import streamlit as st import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression # Load and preprocess the data # Replace 'your_dataset.csv' with the actual file path data = pd.read_csv('dataset.csv') vectorizer = TfidfVectorizer() X = vectorizer.fit_transform(data['text']) y = data['label'] # Train the model classifier = LogisticRegression() classifier.fit(X, y) # Define the prediction function def predict(text): text_vectorized = vectorizer.transform([text]) prediction = classifier.predict(text_vectorized)[0] if prediction == 'AI': score = classifier.predict_proba(text_vectorized)[0][0] else: score = 1 - classifier.predict_proba(text_vectorized)[0][1] response = [ { 'label': prediction, 'score': round(float(score), 4) } ] return response # Streamlit app st.title("AI detector") # Text input for prediction text = st.text_area("Enter some text") # Perform prediction if text is provided if text: result = predict(text) st.json(result)