import streamlit as st import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import time df = pd.read_csv('bank.csv') st.set_page_config(page_title='Real time dashboard', page_icon = '✅',layout="wide") #DASHBOARD TITLE st.title('Real time dashbord analysis') #filtre sur le type de job job_filter = st.selectbox('select a job',pd.unique(df['job'])) df = df[df['job']== job_filter] #Creation d indicateurs avg_age = np.mean(df['age']) count_married = int(df[(df['marital'] == 'married')]['marital'].count()) balance = np.mean(df['balance']) kpi1,kpi2,kpi3= st.columns(3) kpi1.metric(label='Age ⏳',value=round(avg_age),delta=round(avg_age)) kpi2.metric(label='Married Count 💍', value=count_married, delta= round(count_married)) kpi3.metric(label='Balance $',value=f'$ {round(balance,2)}', delta = round(balance/count_married)*100) #Graphiques col1,col2 = st.columns(2) with col1: st.markdown('### First chart') fig1 = plt.figure() sns.barplot(data=df,x='marital',y='age',palette='muted') st.pyplot(fig1) with col2: st.markdown('### Second chart') fig2 = plt.figure() sns.histplot(data=df,x='age',palette='muted') st.pyplot(fig2) st.markdown('### Detailed data view') st.dataframe(df)