import streamlit as st import tensorflow as tf import numpy as np from tensorflow.keras.utils import load_img, img_to_array from tensorflow.keras.preprocessing import image from PIL import Image, ImageOps st.title("Image Classification") upload_file = st.sidebar.file_uploader("Upload Radio images", type = ['jpg','jpeg','png','PNG']) generate_pred = st.sidebar.button("predict") model = tf.keras.models.load_model('best_model.h5') classes_p = {'COVID19': 0, 'NORMAL': 1} if upload_file: st.image(upload_file, caption="Image téléchargée.", use_column_width=True) test_image=image.load_img(upload_file,target_size=(64,64)) image_array = img_to_array(test_image) image_array = np.expand_dims(image_array, axis=0) if generate_pred: predictions = model.predict(image_array) classes = np.argmax(predictions[0]) for key, value in classes_p.items(): if value == classes: st.title("prediction of image is {}".format(key))