#!pip install gradio import os import shutil import glob from tqdm.notebook import tqdm import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import tensorflow as tf from tensorflow import keras import cv2 from PIL import Image from tensorflow.keras.preprocessing.image import ImageDataGenerator import random from random import seed #from livelossplot import PlotLossesKeras import math from tensorflow.keras.metrics import Recall,Precision,AUC from keras.models import load_model model = load_model('target_xception_model.h5') class_names={0:'خبيث',1:'حميد'} def predict_image(img): img_4d=img.reshape(-1,299,299,3) img_4d=img_4d/255 prediction=model.predict(img_4d)[0] #prediction = [1 if x>0.5 else 0 for x in prediction] return {class_names[i]: float(prediction[i]) for i in range(1)} import gradio as gr image = gr.inputs.Image(shape=(299,299)) label = gr.outputs.Label(num_top_classes=1) gr.Interface(fn=predict_image, inputs=image, outputs=label).launch(debug='False',share=True)