import torch from tokenizers import Tokenizer from pathlib import Path from config import get_config, get_weights_file_path from train import get_model def get_tokenizer(config)->Tokenizer: tokenizers_path = Path(config['tokenizer_file']) if Path.exists(tokenizers_path): print("Loading tokenizer from ", tokenizers_path) tokenizer = Tokenizer.from_file(str(tokenizers_path)) return tokenizer else: raise FileNotFoundError("Cant find tokenizer file : ",tokenizers_path) config = get_config("./openweb.config.json") device = "cuda" if torch.cuda.is_available() else "cpu" tokenizer = get_tokenizer(config) pad_token_id = tokenizer.token_to_id("") eos_token_id = tokenizer.token_to_id("") user_token_id = tokenizer.token_to_id("") ai_token_id = tokenizer.token_to_id("") model = get_model(config, tokenizer.get_vocab_size()).to(device) model_path = get_weights_file_path(config,config['preload']) model.eval() state = torch.load(model_path,map_location=torch.device('cpu')) model.load_state_dict(state['model_state_dict']) def generate_response(prompt:str): print("Prompt : ",prompt) word = "" input_tokens = tokenizer.encode(prompt).ids input_tokens.extend([user_token_id] + input_tokens + [ai_token_id] ) if len(input_tokens) > config['seq_len']: print(f"exceeding max length of input : {config['seq_len']}") exit() input_tokens = torch.tensor(input_tokens) decoder_input = input_tokens.to(device) if decoder_input.dim() == 1: decoder_input = decoder_input.unsqueeze(0) temperature = 0.7 top_k = 50 i = 0 print("Output : ",end="") while decoder_input.shape[1] < 2000: # Apply causal mask based on current decoder_input length # decoder_mask = (decoder_input != pad_token_id).unsqueeze(0).int() & causal_mask(decoder_input.size(1)).type_as(input_mask).to(device) # Get model output out = model.decode(decoder_input) logits = model.project(out[:, -1]) # Get logits for last token logits = logits / temperature top_k_logits, top_k_indices = torch.topk(logits, top_k) probs = torch.softmax(top_k_logits, dim=-1) next_token = torch.multinomial(probs, num_samples=1) next_token = top_k_indices.gather(-1, next_token) word += tokenizer.decode([next_token.item()]) print(word,end="") i+=1 decoder_input = torch.cat([decoder_input, next_token], dim=1) if decoder_input.shape[1] > config['seq_len']: decoder_input = decoder_input[:,-config['seq_len']:] if next_token.item() == eos_token_id or i >= 1024: break print() return word