import tensorflow as tf import numpy as np import pickle import streamlit as st import numpy as np from tensorflow import keras import string import re from tqdm import tqdm import pandas as pd import matplotlib.pyplot as plt import pickle import tensorflow as tf from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.layers import Embedding, LSTM, Dense, Bidirectional from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.models import Sequential from tensorflow.keras.optimizers import Adam model = load_model('/nextwords11.h5') tokenizer = pickle.load(open('/token11.pkl', 'rb')) def main(text): seed_text = "" next_words = 3 for _ in range(next_words): token_list = tokenizer.texts_to_sequences([seed_text])[0] token_list = pad_sequences([token_list], maxlen=86, padding='pre') predict_x=model.predict(token_list, verbose=0) predicted=np.argmax(predict_x,axis=1) #predicted = model.predict_classes(token_list, verbose=0) output_word = "" for word, index in tokenizer.word_index.items(): if index == predicted: output_word = word break seed_text += " " + output_word return seed_text text = st.text_input("text", "Type Here") if st.button("main"): result = prediction(sepal_length, sepal_width, petal_length, petal_width) st.success('The output is {}'.format(result)) if __name__=='__main__': main()