import gradio as gr import tensorflow as tf model = tf.keras.models.load_model('toxicity.h5') def score_comment(comment): vectorized_comment = vectorizer([comment]) results = model.predict(vectorized_comment) text = '' for idx, col in enumerate(df.columns[2:]): text += '{}: {}\n'.format(col, results[0][idx]>0.5) return text interface = gr.Interface(fn=score_comment, inputs=gr.Textbox(lines=2, placeholder='Comment to score'), outputs='text') interface.launch()