import os import gradio as gr import pandas as pd import tensorflow as tf from tensorflow.keras.layers import TextVectorization df = pd.read_csv(os.path.join('.', 'train.csv')) loaded_vect_model = tf.keras.models.load_model('vect') vectorizer = loaded_vect_model.layers[0] model = tf.keras.models.load_model('toxicity.h5') def score_comment(comment): vectorized_comment = vectorizer([comment]) results = model.predict(vectorized_comment) text = '' for idx, col in enumerate(df.columns[2:]): text += '{}: {}\n'.format(col, results[0][idx]>0.5) return text interface = gr.Interface(fn=score_comment, inputs=gr.Textbox(lines=2, placeholder='Comment to score'), outputs='text') interface.queue() interface.launch()