import streamlit as st from transformers import pipeline # Initialize the text generation pipeline with the conversational model pipe = pipeline("text2text-generation", model="facebook/blenderbot-400M-distill") # Initialize conversation history if 'conversation_history' not in st.session_state: st.session_state.conversation_history = "" def converse(user_message): # Access and update conversation history st.session_state.conversation_history += f"User: {user_message}\n" # Generate response response = pipe(st.session_state.conversation_history)[0]['generated_text'] # Append the model's response to the conversation history st.session_state.conversation_history += f"Bot: {response}\n" return response # Streamlit app st.title("Conversational AI with Streamlit") user_message = st.text_input("You:", "") if st.button("Send"): if user_message: bot_response = converse(user_message) st.text_area("Bot Response", value=bot_response, height=100, max_chars=None, key="response") else: st.error("Please enter a message before sending.") if st.button("Show Conversation History"): st.text_area("Conversation History", value=st.session_state.conversation_history, height=300, max_chars=None, key="history")