from fastapi import Body, Request from sse_starlette.sse import EventSourceResponse from fastapi.concurrency import run_in_threadpool from configs import (LLM_MODELS, VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, TEMPERATURE, USE_RERANKER, RERANKER_MODEL, RERANKER_MAX_LENGTH, MODEL_PATH) from server.utils import wrap_done, get_ChatOpenAI from server.utils import BaseResponse, get_prompt_template from langchain.chains import LLMChain from langchain.callbacks import AsyncIteratorCallbackHandler from typing import AsyncIterable, List, Optional import asyncio from langchain.prompts.chat import ChatPromptTemplate from server.chat.utils import History from server.knowledge_base.kb_service.base import KBServiceFactory import json from urllib.parse import urlencode from server.knowledge_base.kb_doc_api import search_docs from server.reranker.reranker import LangchainReranker from server.utils import embedding_device async def knowledge_base_chat(query: str = Body(..., description="用户输入", examples=["你好"]), knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]), top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"), score_threshold: float = Body( SCORE_THRESHOLD, description="知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右", ge=0, le=2 ), history: List[History] = Body( [], description="历史对话", examples=[[ {"role": "user", "content": "我们来玩成语接龙,我先来,生龙活虎"}, {"role": "assistant", "content": "虎头虎脑"}]] ), stream: bool = Body(False, description="流式输出"), model_name: str = Body(LLM_MODELS[0], description="LLM 模型名称。"), temperature: float = Body(TEMPERATURE, description="LLM 采样温度", ge=0.0, le=1.0), max_tokens: Optional[int] = Body( None, description="限制LLM生成Token数量,默认None代表模型最大值" ), prompt_name: str = Body( "default", description="使用的prompt模板名称(在configs/prompt_config.py中配置)" ), request: Request = None, ): kb = KBServiceFactory.get_service_by_name(knowledge_base_name) if kb is None: return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}") history = [History.from_data(h) for h in history] async def knowledge_base_chat_iterator( query: str, top_k: int, history: Optional[List[History]], model_name: str = model_name, prompt_name: str = prompt_name, ) -> AsyncIterable[str]: nonlocal max_tokens callback = AsyncIteratorCallbackHandler() if isinstance(max_tokens, int) and max_tokens <= 0: max_tokens = None model = get_ChatOpenAI( model_name=model_name, temperature=temperature, max_tokens=max_tokens, callbacks=[callback], ) docs = await run_in_threadpool(search_docs, query=query, knowledge_base_name=knowledge_base_name, top_k=top_k, score_threshold=score_threshold) # 加入reranker if USE_RERANKER: reranker_model_path = MODEL_PATH["reranker"].get(RERANKER_MODEL,"BAAI/bge-reranker-large") print("-----------------model path------------------") print(reranker_model_path) reranker_model = LangchainReranker(top_n=top_k, device=embedding_device(), max_length=RERANKER_MAX_LENGTH, model_name_or_path=reranker_model_path ) print(docs) docs = reranker_model.compress_documents(documents=docs, query=query) print("---------after rerank------------------") print(docs) context = "\n".join([doc.page_content for doc in docs]) if len(docs) == 0: # 如果没有找到相关文档,使用empty模板 prompt_template = get_prompt_template("knowledge_base_chat", "empty") else: prompt_template = get_prompt_template("knowledge_base_chat", prompt_name) input_msg = History(role="user", content=prompt_template).to_msg_template(False) chat_prompt = ChatPromptTemplate.from_messages( [i.to_msg_template() for i in history] + [input_msg]) chain = LLMChain(prompt=chat_prompt, llm=model) # Begin a task that runs in the background. task = asyncio.create_task(wrap_done( chain.acall({"context": context, "question": query}), callback.done), ) source_documents = [] for inum, doc in enumerate(docs): filename = doc.metadata.get("source") parameters = urlencode({"knowledge_base_name": knowledge_base_name, "file_name": filename}) base_url = request.base_url url = f"{base_url}knowledge_base/download_doc?" + parameters text = f"""出处 [{inum + 1}] [{filename}]({url}) \n\n{doc.page_content}\n\n""" source_documents.append(text) if len(source_documents) == 0: # 没有找到相关文档 source_documents.append(f"未找到相关文档,该回答为大模型自身能力解答!") if stream: async for token in callback.aiter(): # Use server-sent-events to stream the response yield json.dumps({"answer": token}, ensure_ascii=False) yield json.dumps({"docs": source_documents}, ensure_ascii=False) else: answer = "" async for token in callback.aiter(): answer += token yield json.dumps({"answer": answer, "docs": source_documents}, ensure_ascii=False) await task return EventSourceResponse(knowledge_base_chat_iterator(query, top_k, history,model_name,prompt_name))