from __future__ import annotations import json import re import warnings from typing import Dict from langchain.callbacks.manager import AsyncCallbackManagerForChainRun, CallbackManagerForChainRun from langchain.chains.llm import LLMChain from langchain.pydantic_v1 import Extra, root_validator from langchain.schema import BasePromptTemplate from langchain.schema.language_model import BaseLanguageModel from typing import List, Any, Optional from langchain.prompts import PromptTemplate from server.chat.knowledge_base_chat import knowledge_base_chat from configs import VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD, MAX_TOKENS import asyncio from server.agent import model_container from pydantic import BaseModel, Field async def search_knowledge_base_iter(database: str, query: str) -> str: response = await knowledge_base_chat(query=query, knowledge_base_name=database, model_name=model_container.MODEL.model_name, temperature=0.01, history=[], top_k=VECTOR_SEARCH_TOP_K, max_tokens=MAX_TOKENS, prompt_name="default", score_threshold=SCORE_THRESHOLD, stream=False) contents = "" async for data in response.body_iterator: # 这里的data是一个json字符串 data = json.loads(data) contents += data["answer"] docs = data["docs"] return contents async def search_knowledge_multiple(queries) -> List[str]: # queries 应该是一个包含多个 (database, query) 元组的列表 tasks = [search_knowledge_base_iter(database, query) for database, query in queries] results = await asyncio.gather(*tasks) # 结合每个查询结果,并在每个查询结果前添加一个自定义的消息 combined_results = [] for (database, _), result in zip(queries, results): message = f"\n查询到 {database} 知识库的相关信息:\n{result}" combined_results.append(message) return combined_results def search_knowledge(queries) -> str: responses = asyncio.run(search_knowledge_multiple(queries)) # 输出每个整合的查询结果 contents = "" for response in responses: contents += response + "\n\n" return contents _PROMPT_TEMPLATE = """ 用户会提出一个需要你查询知识库的问题,你应该对问题进行理解和拆解,并在知识库中查询相关的内容。 对于每个知识库,你输出的内容应该是一个一行的字符串,这行字符串包含知识库名称和查询内容,中间用逗号隔开,不要有多余的文字和符号。你可以同时查询多个知识库,下面这个例子就是同时查询两个知识库的内容。 例子: robotic,机器人男女比例是多少 bigdata,大数据的就业情况如何 这些数据库是你能访问的,冒号之前是他们的名字,冒号之后是他们的功能,你应该参考他们的功能来帮助你思考 {database_names} 你的回答格式应该按照下面的内容,请注意```text 等标记都必须输出,这是我用来提取答案的标记。 不要输出中文的逗号,不要输出引号。 Question: ${{用户的问题}} ```text ${{知识库名称,查询问题,不要带有任何除了,之外的符号,比如不要输出中文的逗号,不要输出引号}} ```output 数据库查询的结果 现在,我们开始作答 问题: {question} """ PROMPT = PromptTemplate( input_variables=["question", "database_names"], template=_PROMPT_TEMPLATE, ) class LLMKnowledgeChain(LLMChain): llm_chain: LLMChain llm: Optional[BaseLanguageModel] = None """[Deprecated] LLM wrapper to use.""" prompt: BasePromptTemplate = PROMPT """[Deprecated] Prompt to use to translate to python if necessary.""" database_names: Dict[str, str] = None input_key: str = "question" #: :meta private: output_key: str = "answer" #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator(pre=True) def raise_deprecation(cls, values: Dict) -> Dict: if "llm" in values: warnings.warn( "Directly instantiating an LLMKnowledgeChain with an llm is deprecated. " "Please instantiate with llm_chain argument or using the from_llm " "class method." ) if "llm_chain" not in values and values["llm"] is not None: prompt = values.get("prompt", PROMPT) values["llm_chain"] = LLMChain(llm=values["llm"], prompt=prompt) return values @property def input_keys(self) -> List[str]: """Expect input key. :meta private: """ return [self.input_key] @property def output_keys(self) -> List[str]: """Expect output key. :meta private: """ return [self.output_key] def _evaluate_expression(self, queries) -> str: try: output = search_knowledge(queries) except Exception as e: output = "输入的信息有误或不存在知识库,错误信息如下:\n" return output + str(e) return output def _process_llm_result( self, llm_output: str, run_manager: CallbackManagerForChainRun ) -> Dict[str, str]: run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() # text_match = re.search(r"^```text(.*?)```", llm_output, re.DOTALL) text_match = re.search(r"```text(.*)", llm_output, re.DOTALL) if text_match: expression = text_match.group(1).strip() cleaned_input_str = (expression.replace("\"", "").replace("“", ""). replace("”", "").replace("```", "").strip()) lines = cleaned_input_str.split("\n") # 使用逗号分割每一行,然后形成一个(数据库,查询)元组的列表 try: queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines] except: queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines] run_manager.on_text("知识库查询询内容:\n\n" + str(queries) + " \n\n", color="blue", verbose=self.verbose) output = self._evaluate_expression(queries) run_manager.on_text("\nAnswer: ", verbose=self.verbose) run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = llm_output.split("Answer:")[-1] else: return {self.output_key: f"输入的格式不对:\n {llm_output}"} return {self.output_key: answer} async def _aprocess_llm_result( self, llm_output: str, run_manager: AsyncCallbackManagerForChainRun, ) -> Dict[str, str]: await run_manager.on_text(llm_output, color="green", verbose=self.verbose) llm_output = llm_output.strip() text_match = re.search(r"```text(.*)", llm_output, re.DOTALL) if text_match: expression = text_match.group(1).strip() cleaned_input_str = ( expression.replace("\"", "").replace("“", "").replace("”", "").replace("```", "").strip()) lines = cleaned_input_str.split("\n") try: queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines] except: queries = [(line.split(",")[0].strip(), line.split(",")[1].strip()) for line in lines] await run_manager.on_text("知识库查询询内容:\n\n" + str(queries) + " \n\n", color="blue", verbose=self.verbose) output = self._evaluate_expression(queries) await run_manager.on_text("\nAnswer: ", verbose=self.verbose) await run_manager.on_text(output, color="yellow", verbose=self.verbose) answer = "Answer: " + output elif llm_output.startswith("Answer:"): answer = llm_output elif "Answer:" in llm_output: answer = "Answer: " + llm_output.split("Answer:")[-1] else: raise ValueError(f"unknown format from LLM: {llm_output}") return {self.output_key: answer} def _call( self, inputs: Dict[str, str], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager() _run_manager.on_text(inputs[self.input_key]) self.database_names = model_container.DATABASE data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()]) llm_output = self.llm_chain.predict( database_names=data_formatted_str, question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return self._process_llm_result(llm_output, _run_manager) async def _acall( self, inputs: Dict[str, str], run_manager: Optional[AsyncCallbackManagerForChainRun] = None, ) -> Dict[str, str]: _run_manager = run_manager or AsyncCallbackManagerForChainRun.get_noop_manager() await _run_manager.on_text(inputs[self.input_key]) self.database_names = model_container.DATABASE data_formatted_str = ',\n'.join([f' "{k}":"{v}"' for k, v in self.database_names.items()]) llm_output = await self.llm_chain.apredict( database_names=data_formatted_str, question=inputs[self.input_key], stop=["```output"], callbacks=_run_manager.get_child(), ) return await self._aprocess_llm_result(llm_output, inputs[self.input_key], _run_manager) @property def _chain_type(self) -> str: return "llm_knowledge_chain" @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: BasePromptTemplate = PROMPT, **kwargs: Any, ) -> LLMKnowledgeChain: llm_chain = LLMChain(llm=llm, prompt=prompt) return cls(llm_chain=llm_chain, **kwargs) def search_knowledgebase_complex(query: str): model = model_container.MODEL llm_knowledge = LLMKnowledgeChain.from_llm(model, verbose=True, prompt=PROMPT) ans = llm_knowledge.run(query) return ans class KnowledgeSearchInput(BaseModel): location: str = Field(description="The query to be searched") if __name__ == "__main__": result = search_knowledgebase_complex("机器人和大数据在代码教学上有什么区别") print(result) # 这是一个正常的切割 # queries = [ # ("bigdata", "大数据专业的男女比例"), # ("robotic", "机器人专业的优势") # ] # result = search_knowledge(queries) # print(result)