import gradio as gr import openai import os os.environ["PINECONE_ENV"] = "asia-southeast1-gcp-free" # Set your OpenAI GPT-3 API key from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Pinecone from langchain.document_loaders.csv_loader import CSVLoader # loader = CSVLoader(file_path="products_231022 - Products.csv", encoding="utf8") # documents = loader.load() # text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) # docs = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings(openai_api_key = os.environ["OPENAI_API_KEY"]) import pinecone # initialize pinecone pinecone.init( api_key=os.getenv("PINECONE_API_KEY"), # find at app.pinecone.io environment=os.getenv("PINECONE_ENV"), # next to api key in console ) index_name = "chatbot" vectordb = Pinecone.from_existing_index(index_name, embeddings) from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI # # Define a function to generate responses using GPT-3 # def chatbot(input_text): # # from langchain.chat_models import ChatOpenAI # # llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0) # # llm.predict("Hello world!") # # completion = openai.ChatCompletion.create( # # model="gpt-3.5-turbo", # # max_tokens=50, # # api_key=api_key, # # messages=[ # # {"role": "user", "content": input_text} # # ] # # ) # return chain.run({'question': input_text}) # # Create a Gradio interface # chatbot_interface = gr.Interface( # fn=chatbot, # inputs="text", # outputs="text", # title="Chatbot", # ) # # Start the Gradio app # chatbot_interface.launch(share=True) import gradio as gr import openai import os openai.api_key = os.getenv('OPENAI_API_KEY') class Conversation: def __init__(self, num_of_round): self.num_of_round = num_of_round self.messages = [] def ask(self, question): try: self.messages.append({"role": "user", "content": question}) retriever = vectordb.as_retriever() llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, openai_api_key = os.environ["OPENAI_API_KEY"]) memory = ConversationBufferMemory(memory_key="chat_history", return_messages= True) chain = ConversationalRetrievalChain.from_llm(llm, retriever= retriever, memory= memory) response = chain.run({'question': question}) except Exception as e: print(e) return e message = response # 最新的答案拼接进 messages self.messages.append({"role": "assistant", "content": message}) if len(self.messages) > self.num_of_round*2 + 1: del self.messages[1:3] # Remove the first round conversation left. return message conv = Conversation(10) def answer(question, history=[]): history.append(question) response = conv.ask(question) history.append(response) responses = [(u, b) for u, b in zip(history[::2], history[1::2])] return responses, history with gr.Blocks(css="#chatbot{height:300px} .overflow-y-auto{height:500px}") as demo: chatbot = gr.Chatbot(elem_id="chatbot") state = gr.State([]) with gr.Row(): txt = gr.Textbox(show_label=False, placeholder="Enter question and press enter") txt.submit(answer, [txt, state], [chatbot, state]) demo.launch()