Voice-Clone / TTS /api.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
import tempfile
import warnings
from pathlib import Path
from typing import Union
import numpy as np
from torch import nn
from TTS.cs_api import CS_API
from TTS.utils.audio.numpy_transforms import save_wav
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
class TTS(nn.Module):
"""TODO: Add voice conversion and Capacitron support."""
def __init__(
self,
model_name: str = "",
model_path: str = None,
config_path: str = None,
vocoder_path: str = None,
vocoder_config_path: str = None,
progress_bar: bool = True,
cs_api_model: str = "XTTS",
gpu=False,
):
"""🐸TTS python interface that allows to load and use the released models.
Example with a multi-speaker model:
>>> from TTS.api import TTS
>>> tts = TTS(TTS.list_models()[0])
>>> wav = tts.tts("This is a test! This is also a test!!", speaker=tts.speakers[0], language=tts.languages[0])
>>> tts.tts_to_file(text="Hello world!", speaker=tts.speakers[0], language=tts.languages[0], file_path="output.wav")
Example with a single-speaker model:
>>> tts = TTS(model_name="tts_models/de/thorsten/tacotron2-DDC", progress_bar=False, gpu=False)
>>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav")
Example loading a model from a path:
>>> tts = TTS(model_path="/path/to/checkpoint_100000.pth", config_path="/path/to/config.json", progress_bar=False, gpu=False)
>>> tts.tts_to_file(text="Ich bin eine Testnachricht.", file_path="output.wav")
Example voice cloning with YourTTS in English, French and Portuguese:
>>> tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=True)
>>> tts.tts_to_file("This is voice cloning.", speaker_wav="my/cloning/audio.wav", language="en", file_path="thisisit.wav")
>>> tts.tts_to_file("C'est le clonage de la voix.", speaker_wav="my/cloning/audio.wav", language="fr", file_path="thisisit.wav")
>>> tts.tts_to_file("Isso é clonagem de voz.", speaker_wav="my/cloning/audio.wav", language="pt", file_path="thisisit.wav")
Example Fairseq TTS models (uses ISO language codes in https://dl.fbaipublicfiles.com/mms/tts/all-tts-languages.html):
>>> tts = TTS(model_name="tts_models/eng/fairseq/vits", progress_bar=False, gpu=True)
>>> tts.tts_to_file("This is a test.", file_path="output.wav")
Args:
model_name (str, optional): Model name to load. You can list models by ```tts.models```. Defaults to None.
model_path (str, optional): Path to the model checkpoint. Defaults to None.
config_path (str, optional): Path to the model config. Defaults to None.
vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None.
vocoder_config_path (str, optional): Path to the vocoder config. Defaults to None.
progress_bar (bool, optional): Whether to pring a progress bar while downloading a model. Defaults to True.
cs_api_model (str, optional): Name of the model to use for the Coqui Studio API. Available models are
"XTTS", "V1". You can also use `TTS.cs_api.CS_API" for more control.
Defaults to "XTTS".
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
"""
super().__init__()
self.manager = ModelManager(models_file=self.get_models_file_path(), progress_bar=progress_bar, verbose=False)
self.synthesizer = None
self.voice_converter = None
self.csapi = None
self.cs_api_model = cs_api_model
self.model_name = ""
if gpu:
warnings.warn("`gpu` will be deprecated. Please use `tts.to(device)` instead.")
if model_name is not None:
if "tts_models" in model_name or "coqui_studio" in model_name:
self.load_tts_model_by_name(model_name, gpu)
elif "voice_conversion_models" in model_name:
self.load_vc_model_by_name(model_name, gpu)
if model_path:
self.load_tts_model_by_path(
model_path, config_path, vocoder_path=vocoder_path, vocoder_config=vocoder_config_path, gpu=gpu
)
@property
def models(self):
return self.manager.list_tts_models()
@property
def is_multi_speaker(self):
if hasattr(self.synthesizer.tts_model, "speaker_manager") and self.synthesizer.tts_model.speaker_manager:
return self.synthesizer.tts_model.speaker_manager.num_speakers > 1
return False
@property
def is_coqui_studio(self):
if self.model_name is None:
return False
return "coqui_studio" in self.model_name
@property
def is_multi_lingual(self):
# Not sure what sets this to None, but applied a fix to prevent crashing.
if isinstance(self.model_name, str) and "xtts" in self.model_name:
return True
if hasattr(self.synthesizer.tts_model, "language_manager") and self.synthesizer.tts_model.language_manager:
return self.synthesizer.tts_model.language_manager.num_languages > 1
return False
@property
def speakers(self):
if not self.is_multi_speaker:
return None
return self.synthesizer.tts_model.speaker_manager.speaker_names
@property
def languages(self):
if not self.is_multi_lingual:
return None
return self.synthesizer.tts_model.language_manager.language_names
@staticmethod
def get_models_file_path():
return Path(__file__).parent / ".models.json"
def list_models(self):
try:
csapi = CS_API(model=self.cs_api_model)
models = csapi.list_speakers_as_tts_models()
except ValueError as e:
print(e)
models = []
manager = ModelManager(models_file=TTS.get_models_file_path(), progress_bar=False, verbose=False)
return manager.list_tts_models() + models
def download_model_by_name(self, model_name: str):
model_path, config_path, model_item = self.manager.download_model(model_name)
if "fairseq" in model_name or (model_item is not None and isinstance(model_item["model_url"], list)):
# return model directory if there are multiple files
# we assume that the model knows how to load itself
return None, None, None, None, model_path
if model_item.get("default_vocoder") is None:
return model_path, config_path, None, None, None
vocoder_path, vocoder_config_path, _ = self.manager.download_model(model_item["default_vocoder"])
return model_path, config_path, vocoder_path, vocoder_config_path, None
def load_vc_model_by_name(self, model_name: str, gpu: bool = False):
"""Load one of the voice conversion models by name.
Args:
model_name (str): Model name to load. You can list models by ```tts.models```.
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
"""
self.model_name = model_name
model_path, config_path, _, _, _ = self.download_model_by_name(model_name)
self.voice_converter = Synthesizer(vc_checkpoint=model_path, vc_config=config_path, use_cuda=gpu)
def load_tts_model_by_name(self, model_name: str, gpu: bool = False):
"""Load one of 🐸TTS models by name.
Args:
model_name (str): Model name to load. You can list models by ```tts.models```.
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
TODO: Add tests
"""
self.synthesizer = None
self.csapi = None
self.model_name = model_name
if "coqui_studio" in model_name:
self.csapi = CS_API()
else:
model_path, config_path, vocoder_path, vocoder_config_path, model_dir = self.download_model_by_name(
model_name
)
# init synthesizer
# None values are fetch from the model
self.synthesizer = Synthesizer(
tts_checkpoint=model_path,
tts_config_path=config_path,
tts_speakers_file=None,
tts_languages_file=None,
vocoder_checkpoint=vocoder_path,
vocoder_config=vocoder_config_path,
encoder_checkpoint=None,
encoder_config=None,
model_dir=model_dir,
use_cuda=gpu,
)
def load_tts_model_by_path(
self, model_path: str, config_path: str, vocoder_path: str = None, vocoder_config: str = None, gpu: bool = False
):
"""Load a model from a path.
Args:
model_path (str): Path to the model checkpoint.
config_path (str): Path to the model config.
vocoder_path (str, optional): Path to the vocoder checkpoint. Defaults to None.
vocoder_config (str, optional): Path to the vocoder config. Defaults to None.
gpu (bool, optional): Enable/disable GPU. Some models might be too slow on CPU. Defaults to False.
"""
self.synthesizer = Synthesizer(
tts_checkpoint=model_path,
tts_config_path=config_path,
tts_speakers_file=None,
tts_languages_file=None,
vocoder_checkpoint=vocoder_path,
vocoder_config=vocoder_config,
encoder_checkpoint=None,
encoder_config=None,
use_cuda=gpu,
)
def _check_arguments(
self,
speaker: str = None,
language: str = None,
speaker_wav: str = None,
emotion: str = None,
speed: float = None,
**kwargs,
) -> None:
"""Check if the arguments are valid for the model."""
if not self.is_coqui_studio:
# check for the coqui tts models
if self.is_multi_speaker and (speaker is None and speaker_wav is None):
raise ValueError("Model is multi-speaker but no `speaker` is provided.")
if self.is_multi_lingual and language is None:
raise ValueError("Model is multi-lingual but no `language` is provided.")
if not self.is_multi_speaker and speaker is not None and "voice_dir" not in kwargs:
raise ValueError("Model is not multi-speaker but `speaker` is provided.")
if not self.is_multi_lingual and language is not None:
raise ValueError("Model is not multi-lingual but `language` is provided.")
if not emotion is None and not speed is None:
raise ValueError("Emotion and speed can only be used with Coqui Studio models.")
else:
if emotion is None:
emotion = "Neutral"
if speed is None:
speed = 1.0
# check for the studio models
if speaker_wav is not None:
raise ValueError("Coqui Studio models do not support `speaker_wav` argument.")
if speaker is not None:
raise ValueError("Coqui Studio models do not support `speaker` argument.")
if language is not None and language != "en":
raise ValueError("Coqui Studio models currently support only `language=en` argument.")
if emotion not in ["Neutral", "Happy", "Sad", "Angry", "Dull"]:
raise ValueError(f"Emotion - `{emotion}` - must be one of `Neutral`, `Happy`, `Sad`, `Angry`, `Dull`.")
def tts_coqui_studio(
self,
text: str,
speaker_name: str = None,
language: str = None,
emotion: str = None,
speed: float = 1.0,
pipe_out=None,
file_path: str = None,
) -> Union[np.ndarray, str]:
"""Convert text to speech using Coqui Studio models. Use `CS_API` class if you are only interested in the API.
Args:
text (str):
Input text to synthesize.
speaker_name (str, optional):
Speaker name from Coqui Studio. Defaults to None.
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
supported by `XTTS` model.
emotion (str, optional):
Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Emotions are only available
with "V1" model. Defaults to None.
speed (float, optional):
Speed of the speech. Defaults to 1.0.
pipe_out (BytesIO, optional):
Flag to stdout the generated TTS wav file for shell pipe.
file_path (str, optional):
Path to save the output file. When None it returns the `np.ndarray` of waveform. Defaults to None.
Returns:
Union[np.ndarray, str]: Waveform of the synthesized speech or path to the output file.
"""
speaker_name = self.model_name.split("/")[2]
if file_path is not None:
return self.csapi.tts_to_file(
text=text,
speaker_name=speaker_name,
language=language,
speed=speed,
pipe_out=pipe_out,
emotion=emotion,
file_path=file_path,
)[0]
return self.csapi.tts(text=text, speaker_name=speaker_name, language=language, speed=speed, emotion=emotion)[0]
def tts(
self,
text: str,
speaker: str = None,
language: str = None,
speaker_wav: str = None,
emotion: str = None,
speed: float = None,
**kwargs,
):
"""Convert text to speech.
Args:
text (str):
Input text to synthesize.
speaker (str, optional):
Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by
`tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None.
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
supported by `XTTS` model.
speaker_wav (str, optional):
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
Defaults to None.
emotion (str, optional):
Emotion to use for 🐸Coqui Studio models. If None, Studio models use "Neutral". Defaults to None.
speed (float, optional):
Speed factor to use for 🐸Coqui Studio models, between 0 and 2.0. If None, Studio models use 1.0.
Defaults to None.
"""
self._check_arguments(
speaker=speaker, language=language, speaker_wav=speaker_wav, emotion=emotion, speed=speed, **kwargs
)
if self.csapi is not None:
return self.tts_coqui_studio(
text=text, speaker_name=speaker, language=language, emotion=emotion, speed=speed
)
wav = self.synthesizer.tts(
text=text,
speaker_name=speaker,
language_name=language,
speaker_wav=speaker_wav,
reference_wav=None,
style_wav=None,
style_text=None,
reference_speaker_name=None,
**kwargs,
)
return wav
def tts_to_file(
self,
text: str,
speaker: str = None,
language: str = None,
speaker_wav: str = None,
emotion: str = None,
speed: float = 1.0,
pipe_out=None,
file_path: str = "output.wav",
**kwargs,
):
"""Convert text to speech.
Args:
text (str):
Input text to synthesize.
speaker (str, optional):
Speaker name for multi-speaker. You can check whether loaded model is multi-speaker by
`tts.is_multi_speaker` and list speakers by `tts.speakers`. Defaults to None.
language (str, optional):
Language code for multi-lingual models. You can check whether loaded model is multi-lingual
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
speaker_wav (str, optional):
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
Defaults to None.
emotion (str, optional):
Emotion to use for 🐸Coqui Studio models. Defaults to "Neutral".
speed (float, optional):
Speed factor to use for 🐸Coqui Studio models, between 0.0 and 2.0. Defaults to None.
pipe_out (BytesIO, optional):
Flag to stdout the generated TTS wav file for shell pipe.
file_path (str, optional):
Output file path. Defaults to "output.wav".
kwargs (dict, optional):
Additional arguments for the model.
"""
self._check_arguments(speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs)
if self.csapi is not None:
return self.tts_coqui_studio(
text=text,
speaker_name=speaker,
language=language,
emotion=emotion,
speed=speed,
file_path=file_path,
pipe_out=pipe_out,
)
wav = self.tts(text=text, speaker=speaker, language=language, speaker_wav=speaker_wav, **kwargs)
self.synthesizer.save_wav(wav=wav, path=file_path, pipe_out=pipe_out)
return file_path
def voice_conversion(
self,
source_wav: str,
target_wav: str,
):
"""Voice conversion with FreeVC. Convert source wav to target speaker.
Args:``
source_wav (str):
Path to the source wav file.
target_wav (str):`
Path to the target wav file.
"""
wav = self.voice_converter.voice_conversion(source_wav=source_wav, target_wav=target_wav)
return wav
def voice_conversion_to_file(
self,
source_wav: str,
target_wav: str,
file_path: str = "output.wav",
):
"""Voice conversion with FreeVC. Convert source wav to target speaker.
Args:
source_wav (str):
Path to the source wav file.
target_wav (str):
Path to the target wav file.
file_path (str, optional):
Output file path. Defaults to "output.wav".
"""
wav = self.voice_conversion(source_wav=source_wav, target_wav=target_wav)
save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate)
return file_path
def tts_with_vc(self, text: str, language: str = None, speaker_wav: str = None):
"""Convert text to speech with voice conversion.
It combines tts with voice conversion to fake voice cloning.
- Convert text to speech with tts.
- Convert the output wav to target speaker with voice conversion.
Args:
text (str):
Input text to synthesize.
language (str, optional):
Language code for multi-lingual models. You can check whether loaded model is multi-lingual
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
speaker_wav (str, optional):
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
Defaults to None.
"""
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
# Lazy code... save it to a temp file to resample it while reading it for VC
self.tts_to_file(text=text, speaker=None, language=language, file_path=fp.name, speaker_wav=speaker_wav)
if self.voice_converter is None:
self.load_vc_model_by_name("voice_conversion_models/multilingual/vctk/freevc24")
wav = self.voice_converter.voice_conversion(source_wav=fp.name, target_wav=speaker_wav)
return wav
def tts_with_vc_to_file(
self, text: str, language: str = None, speaker_wav: str = None, file_path: str = "output.wav"
):
"""Convert text to speech with voice conversion and save to file.
Check `tts_with_vc` for more details.
Args:
text (str):
Input text to synthesize.
language (str, optional):
Language code for multi-lingual models. You can check whether loaded model is multi-lingual
`tts.is_multi_lingual` and list available languages by `tts.languages`. Defaults to None.
speaker_wav (str, optional):
Path to a reference wav file to use for voice cloning with supporting models like YourTTS.
Defaults to None.
file_path (str, optional):
Output file path. Defaults to "output.wav".
"""
wav = self.tts_with_vc(text=text, language=language, speaker_wav=speaker_wav)
save_wav(wav=wav, path=file_path, sample_rate=self.voice_converter.vc_config.audio.output_sample_rate)