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AUTONOMOUS SATELLITE DOCKING VIA ADAPTIVE OPTIMAL
OUTPUT REGULATION: A REINFORCEMENT LEARNING

APPROACH

Omar Qasem*, Madhur Tiwari†, and Hector Gurierrez‡

This paper describes an online off-policy data-driven reinforcement learning based-
algorithm to regulate and control the relative position of a deputy satellite in an au-
tonomous satellite docking problem. The optimal control policy is learned under
the framework of output regulation problem and adaptive dynamic programming
(ADP) by considering the continuous-time linearized model of the satellite. The
linearized model of relative motion is used to describe the motion between satel-
lites, and the satellite docking problem is formulated as a linear optimal output
regulation problem, in which the feedback-forward optimal controller is used to
track a class of references and rejecting a class of disturbances while maintaining
the overall system’s closed-loop stability. The optimal control problem is pre-
sented using a data-driven reinforcement learning based method to regulate the
relative position and velocity of the deputy to safely dock with the chief. Using
the adaptive optimal output regulation framework, the learned optimal feedback-
feedforward gains guarantee optimal transient and steady state performances with-
out any prior knowledge of the dynamics of the studied system. The states/input
information of the underlying dynamical system are instead used to compute the
approximated optimal feedback-feedforward control gain matrices. Reference
tracking and disturbance rejection are achieved in an optimal sense without us-
ing any modelling information of the physics of the satellites. Simulation results
are presented and demonstrate the efficacy of the proposed method.

INTRODUCTION

One of the most important functions of an autonomous system is to be able to follow a speci-
fied path, pertinent to the mission. Trajetory tracking is often accomplished using a combination
of a waypoint path planner and a control system that is used to follow the computed way-points.
Path planning is an extensively researched topic but it is not pertinent to planners can be converted
into 3-D trajectories. The control effort required to achieve these maneuvers can then be used by
the controller to follow the trajectory. In the autonomous satellite docking problem, the main goal
is achieve the position tracking of the deputy satellite to the chief satellite. The deputy satellite
objective is to complete the docking procedure with the chief. In other words, the relative posi-
tion/velocity of the deputy needs to follow some reference input generated by chief. Under this
framework, we consider the output regulation problem to achieve the autonomous satellite docking
procedure.

The output regulation problem has gained the consideration and attraction of a wide audience
in control systems society since it is a general mathematical formulation to tremendous control
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problems applications in engineering, biology, satellite clustering and other disciplines; see, for in-
stance,1–5 and many references therein. The linear output regulation problem is mainly concerned in
designing a control policy to achieve asymptotic tracking of a class of reference inputs, in addition
to rejecting nonvanishing disturbances, in which both the reference signals and the disturbances are
generated by a class of an autonomous systems, named exosystems. Essentially, the output regula-
tion problem is solved using either feedback-feedforward method, or the internal model principle. In
this work, we focus on solving the output regulation problem in the feedback-feedforward scheme.

Solving the output regulation problem by itself cannot guarantee an optimal behaviour for the
studied dynamical system, whether in its transient or steady state responses. Dynamic program-
ming (DP) is a backbone in solving optimal control problems. DP was first introduce by Bellman in
the early 1950s.6–8 Bellman principle of optimality is the fundamental idea behind DP, which states
that an optimal policy has the property that the following actions must achieve an optimal policy
with regard to the state resulting from those previous actions, no matter what previous actions have
been.9 Based on the theoretical foundation of DP, reinforcement learning10 and adaptive dynamic
programming (ADP),11 methods have been developed to provide learning-based solutions to opti-
mal control and decision making problems without using the modeling information. In particular,
ADP has gained numerous attentions recently and been applied to control both continuous-time
systems11–26 and discrete-time systems.27–32

Therefore, different studies have considered combining the theories of adaptive optimal con-
trol with the output regulation in order to achieve the adaptive optimal output regulation problem;
see13, 33–44 and references therein. Using reinforcement learning and Bellman’s principle of op-
timality,10 ADP methods,16, 24, 34, 45–56 which are essentially based on reinforcement learning, are
developed such that the agent can learn towards the optimal control policy by interacting with its
unknown environment. With this learning framework, see Fig. 1, and by taking into account the
output regulation problem, one can develop an adaptive optimal feedback-feedforward controller
which behaves optimally on a long term without the knowledge of the system matrices.

In addition to the asymptotic tracking and disturbance rejection, two minimization problems of
a predefined costs function are also considered, in which by solving these minimization problems,
the optimal output regulation is achieved. Besides the issue of maintaining the asymptotic tracking,
obtaining the full knowledge of the dynamics of the satellite is usually a difficult task, or even im-
possible. Moreover, the modelling information may not be exact enough which can cause modelling
mismatch and therefore, the designed controller may not achieve satisfactory results. To fill in the
gap between the output regulation problem and optimality, and overcome the barrier of modelling
the physics of the system, a data-driven optimal controller is designed to approximate the feedback
and feedforward control gains without the knowledge of the dynamics of the satellite (deputy) using
the sate/input information collected along the trajectories of the deputy.

The contribution of this paper is summarized by the following: (i) We consider the autonomous
satellite docking problem based on the ADP and under the framework of the output regulation
problem. (ii) The Clohessy-Wiltshire equations are considered wherein the optimal feedback-
feedforward control gain matrices are obtained using value iteration. (iii) It is shown the tracking
of the deputy to the chief is perfectly achieved in an optimal sense by considering reinforcement
learning with the output regulation problem. (iv) To best of our knowledge, this work is the first
of its kind to consider ADP strategies and the output regulation concept in autonomous satellite
docking applications to regulate the relative position of the deputy to chief.
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Notations. The operator | · | represents the Euclidean norm for vectors and the induced norm
for matrices. Z+ denotes the set of nonnegative integers. The Kronecker product is represented
by ⊗, and the block diagonal matrix operator is denoted by bdiag. In denotes the identity matrix
of dimension n and 0n×m denotes a n ×m zero matrix. vec(A) = [aT

1 , a
T
2 , ..., a

T
m]T, where ai ∈

Rn is the ith column of A ∈ Rn×m. For a symmetric matrix P = P T ∈ Rm×m, vecs(P ) =

[p11, 2p12, ..., 2p1m, p22, 2p23, ..., 2pm−1,m, pmm]T ∈ R
1
2
m(m+1). P � (�)0 and P ≺ (�)0 denote

the matrix P is positive definite (semidefinite) and negative definite (semidefinite), respectively. For
a column vector v ∈ Rn, vecv(v)=[v2

1, v1v2, · · · , v1vn, v
2
2, v2v3, · · · , vn−1vn, v

2
n]T ∈ R

1
2
n(n+1).

For a matrix A ∈ Rn×n, σ(A) denotes the spectrum of A. For any λ ∈ σ(A), Re(λ) represents the
real part of the eigenvalue λ.

OBJECTIVE AND METHODOLOGY

The objective of this paper is to study and analyze the docking scenario of a deputy satellite into a
chief satellite such that the process is done with guaranteed stability, and maintaining the asymptotic
tracking of the deputy to the chief. Moreover, the method should not rely on the prior knowledge of
the physics of the system.Therefore, the learning method is carried by the adaptive optimal output
regulation, in which the optimal control policy are learned using ADP.

To begin with, consider the following continuous-time linear system described by

v̇ = Ev, (1)

ẋ = Ax+Bu+Dv (2)

e = Cx+ Fv, (3)

where the vector x ∈ Rn is the state, u ∈ Rm is the control input, and v ∈ Rq stands for the exostate
of an autonomous system (1). The vector e ∈ Rp represents the output tracking error. The matrices
A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×q, C ∈ Rp×n, and F ∈ Rp×q are real matrices with the pair
(A,B) are assumed to be unknown.

In our case, the relative motion between a ’Chief’ and a ’Deputy’ which are in close vicinity
of each other is defined by the Clohessy-Wiltshire (CW) equations.57 Relative accelerations in
Cartesian coordinates are given by:

ẍ− 2n̄ẏ− 3n̄2x = 0, (4)

ÿ + 2n̄ẋ = 0, (5)

z̈ + n̄2z = 0, (6)

where (x, y, z) represent the relative position of the two satellites in the orthogonal Cartesian coor-
dinate system and n̄ is the mean orbital rate. The vector components are taken in the rotating chief
Hill frame. The advantage of using Hill frame coordinates is that the physical relative orbit dimen-
sions are immediately apparent from these coordinates. The (x, y) coordinates define the relative
orbit motion in the chief orbit plane. The z coordinate defines any motion out of the chief orbit
plane. The following assumptions are taken into account such (4)-(6) can be held.

Assumption 1 The relative distance between the chief and the deputy is much smaller than the
orbit radius r.

Assumption 2 The relative orbit is assumed to be circular.
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Figure 1. The framework of the learning-based adaptive optimal output regulation

To begin with, we define the state space vector x as x = [x, y, z, ẋ, ẏ, ż]T, and the control input
vector as u = [T1, T2, T3]T, such that the thrusters are available to control the deputy in any of the
three directions. We can then write eqs (4)-(6) in the form of (1)-(3).

Some general assumptions are also considered when solving the output regulation as follows.

Assumption 3 The pairs (A,B) and (C,A) are stabilizable and observable, respectively.

Assumption 4 rank
([
A− λIn B

C 0

])
= n+ p, ∀λ ∈ σ(E).

In order to solve the optimal output regulation problem, two optimization problems need to be
addressed. The static optimization Problem 1 is solved in order to find the optimal solution (X?, U?)
to the regulator equations (8)-(9). While the dynamic optimization problem described in Problem 2
is solved to find the optimal feedback control policy. Both problems are stated as follows:

Problem 1

min
(X,U)

Tr(XTQ̄X + UTR̄U), (7)

subject to XE = AX +BU +D, (8)

0 = CX + F, (9)

where Q̄ =
(
Q̄
)T � 0 and R̄ =

(
R̄
)T � 0.

Based on Assumption 4, the solvability of the regulator equations defined by (8)-(9) is guaranteed
and the pair (X,U) exist for any matrices D and F ; see.2 Additionally, the solution to Problem
1, i.e., (X?, U?) is unique, which will guarantee that the feedforward control policy obtained using
(X?, U?) is also unique and optimal.
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Problem 2

min
ūi

∫ ∞
0

(
x̄TQx̄+ ūTRū

)
dt, (10)

subject to ˙̄x = Ax̄+Bū, (11)

e = Cx̄, (12)

where Q = (Q)T � 0, R = (R)T � 0, with
(
A,
√
Q
)

being observable. The equations (11)-(12)
form the error system with x̄ := x−Xv and ū := u− Uv.

Note that if the deputy’s dynamics in (2) are perfectly known, one can develop the optimal con-
troller in the following form.

u?(K?, L?) = −K?x+ L?v, (13)

where K? = R−1BTP ?, and P ? is the unique solution of the following albegraic Ricatti equation
(ARE)

ATP ? + P ?A+Q− P ?BR−1BTP ? = 0. (14)

The solutions to the regulator equations (8)-(9), i.e., (X,U), form the optimal feedforwad gain
matrix such that

L? = U +K?X. (15)

It is remarkable that equation (14) is nonlinear in P ?. Therefore, different iterative methods have
considered to solve the ARE iteratively, including policy iteration (PI) and value iteration (VI). The
following lemma shows the convergence of (14) in the sense of the PI method.

Lemma 1 (59) Let K0 ∈ Rm×n be a stabilizing feedback gain matrix, the matrix Pk = (Pk)
T � 0

be the solution of the following equation

Pk(A−BKk−1) + (A−BKk−1)TPk +Q+KT
k−1RKk−1 = 0, (16)

and the control gain matrix Kk, with k = 1, 2, · · · , are defined recursively by

Kk = R−1BTPk−1. (17)

Then the following properties hold for any k ∈ Z+.

1. The matrix A−BKk is Hurwitz.

2. P ? � Pk � Pk−1.

3. lim
k→∞

Kk = K?, lim
k→∞

Pk = P ?.

It is notable that an initial stabilizing control policy is required to initiate the learning process
of PI. In this paper we consider an iterative reinforcement learning method based on VI to solve
P ?, wherein the solvability of the VI is considered under ADP scheme. We consider the use of
VI since no initial stabilizing control policy is required to initiate the learning process. This gives
VI an advantage over PI since obtaining the prior knowledge of an initial stabilizing control policy
is a stringent requirement and may be impossible to obtain, especially when the system dynamics
are not available or are not known perfectly. The iterative process of VI to find the optimal control
policy is done by repeating the value update step until the value function converges to its optimal
value. In the following sections, we show in further details the use of VI to solve our problem.
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MODEL-BASED VALUE ITERATION

Throughout this section, the value iteration is used such that the value matrix is iteratively updated
until the value matrix converges within a predefined condition. To begin with, {Br}∞r=0 is defined
as a collection of nonempty interiors bounded sets, which satisfies

Br ⊂ Br+1 ∈ J n+ , r ∈ Z+, lim
r→∞

Br = J n+ ,

and ε > 0 is a small constant selected as a threshold. In addition, select a deterministic sequence
{εk}∞k=0 such that the following conditions are satisfied:

εk > 0,

∞∑
k=0

εk =∞, lim
k→0

εk = 0. (18)

As mentioned earlier, the VI is different from the policy iteration, described by (16)-(17) in the
sense that an initial stabilizing control policy is not required. Instead, the learning process is initiated
with an arbitrary value matrix P0 = (P0)T � 0. In the following, the model-based VI algorithm is
given, in which the system matrices (A,B) are used to learn the optimal control policy, based on
the results in.16

Algorithm 1 Model-based Value Iteration
1: Select a small constant ε > 0, and P0 = (P0)T � 0.
2: k, r ← 0.
3: repeat
4: P̃k+1 ← Pk + εk(PkA+ATPk +Q−PkBR−1BTPk)
5: if P̃k+1 /∈ Br then Pk+1 ← P0, r ← r + 1.
6: else Pk+1 ← P̃k+1

endif
7: k ← k + 1
8: until |P̃k − Pk−1|/εk−1 ≺ ε
9: k? ← k

10: Find the pair (X,U) from (8)-(9).
11: Lk? ← U +Kk?X
12: Obtain the optimal controller using u? = −Kk?x+ Lk?v.

Remark 1 It is noteworthy to mention that if the bound of P ? is known in prior, i.e., |P ?| < γ, then
one can fix Br to Br = γ.

DATA-DRIVEN VALUE ITERATION FOR OUTPUT REGULATION PROBLEM

From the previous section, it is notable that the model-based VI requires the full knowledge of
the system matrices (A,B). In practice, obtaining these matrices may not be easy when considering
higher order and more complex systems. In this section, we consider a data-driven VI method in
which the optimal control policy is obtained without relying on the dynamics or the physics of
the system, but the data (state/input information) collected along the trajectories of the underlying
dynamical system are used to learn an approximated optimal control policy.
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Considering the x−system in (2), define x̄j = x −Xjv for 0 ≤ j ≤ h + 1, where X0 = 0n×q,
Xj ∈ Rn×q so that CX1 + F = 0. The matrices Xj for 2 ≤ j ≤ h + 1, where h = (n − p)q
is the null space dimension of Iq ⊗ C, are selected such that the basis for ker(Iq ⊗ C) are formed
by all the vectors vec(Xj). With the above definitions along with (1)–(2), the following differential
equation is then obtained.

˙̄xj = Ax+Bu+ (D −XjE)v (19)

= Akx̄j +B(Kkx̄j + u) + (D − S(Xj))v (20)

where the Sylvester map S : Rn×q → Rn×q satisfies S(X) = XE − AX , ∀ X ∈ Rn×q, and
Ak = A − BKk. For any two vectors a(t) ∈ Rn, b(t) ∈ Rm, and a sufficiently large ρ ∈ Z+, the
following matrices are defined.

δb =
[
vecv(b)|t1t0 , vecv(b)|t2t1 · · · , vecv(b)|tρtρ−1

]T
∈ Rρ×m(m+1)/2,

Γa,b =
[∫ t1
t0
a⊗ b dτ,

∫ t2
t1
a⊗ b dτ, · · · ,

∫ tρ
tρ−1

a⊗ b dτ
]T
∈ Rρ×nm.

Ia=
[∫ t1
t0

vecv(a)dτ,
∫ t2
t1

vecv(a)dτ · · · ,
∫ tρ
tρ−1

vecv(a)dτ
]T
∈ Rρ×m(m+1)/2.

Consider the Lyapunov candidate Vk(x̄j) = x̄T
jPkx̄j , where k ∈ Z+. By taking the time deriva-

tive of Vk(x̄j) along with (20), with some mathematical manipulations and rearrangements, one
obtains the following.

V̇k(x̄j) = ˙̄xT
jPkx̄j + x̄T

jPk ˙̄xj

= x̄T
j (Hk)x̄j + 2uTRKk+1x̄j + 2vT(D − S(Xj))

TPkx̄j (21)

where Hk = ATPk + PkA.

By taking the integral of (21) over [t0, ts], where {tl}sl=0 with tl = tl−1 +∆t,∆t > 0 is a strictly
increasing sequence, the result can be written in the following Kronecker product representation.

Θj

 vecs(Hk)
vec(Kk+1)

vec((D − S(Xj))
TPk)

 = δx̄j ,x̄jvecs(Pk) (22)

where Θj =
[
Ix̄j , 2Γx̄j ,u(In ⊗R), 2Γx̄j ,v

]
. If Θj is full column rank, the solution of (22) is ob-

tained in the sense of least square error by using the pseudo-inverse of Θj , i.e., Θ†j =
(

ΘT
jΘj

)−1
ΘT
j .

The full column rank condition of Θj is satisfied by the following lemma.

Lemma 2 For all j ∈ Z+, if there exist a s′ ∈ Z+ such that for all s > s′ the following rank
condition is satisfied

rank
([
Ix̄j ,Γx̄j ,u,Γx̄j ,v

])
=
n(n+ 1)

2
+ (m+ q)n (23)

for any increasing sequence {tl}sl=0, tl = tl−1 + ∆t, ∆t > 0, then the matrix Θj has full column
rank, ∀ k ∈ Z+.
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Lemma 2 shows that if (23) is satisfied, the existence and uniqueness of the solution of (22) is
guaranteed, where the solution can be obtained using the pseudo-inverse of Θj .

Remark 2 The matrix Θj is fixed for all k ∈ Z+ and does not require to be updated at each
iteration k.

To this end the value matrix is updated using stochastic approximation by

Pk+1 ← Pk + εk(Hk +Q− (Kk+1)TRKk+1)

where εk satisfies (18), until the condition |Pk − Pk−1|/εk ≤ ε is satisfied, where ε > 0 is a small
threshold. By that, it is guaranteed that the obtained control policy is close enough to the actual
optimal one.

The data-driven VI algorithm can now be introduced. It is presented in Algorithm 2.

Algorithm 2 Data-Driven Value Iteration for Optimal Output Regulation
1: Choose a small threshold constant ε > 0 and P0 = (P0)T � 0.
2: Compute the matrices X0, X1, · · · , Xh+1.
3: Choose an arbitrary K0, not necessarily stabilizing, and employ u0 = −K0x+ η, with η being

an exploration noise over [t0, ts].
4: j ← 0.
5: repeat
6: Compute Ix̄j , Γx̄ju, and Γx̄jv while satisfying (23).
7: j ← j + 1.
8: until j = h+ 2
9: k ← 0, j ← 0, r ← 0.

10: repeat
11: Solve Hk and Kk+1 from (22).
12: P̃k+1 ← Pk + εk(Hk +Q− (Kk+1)TRKk+1)
13: if P̃ k+1 /∈ Br then Pk+1 ← P0, r ← r + 1.
14: else Pk+1 ← P̃k+1

end if
15: k ← k + 1
16: until |Pk − Pk−1|/εk−1 < ε
17: k ← k∗, j ← 1.
18: repeat
19: From (22), solve S(Xj). j ← j + 1.
20: until j = h+ 2

From Problem 1, find (X?, U?) using online data.
21: Lk? ← U? +Kk?X

?

22: Obtain the suboptimal controller using

u? = −Kk?x+ Lk?v. (24)

If (23) is satisfied, it is guaranteed that the sequences {Pk}∞k=0 and {Kk}∞k=1 learned by Algo-
rithm 2 converge respectively to P ? and K?. It is worth mentioning that the proposed VI Algorithm
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2 is an off-policy learning algorithm. Since the value function in VI is increasing, the increasing
sequence of {Pk}∞k=0 will not affect the trajectories of the system during the learning period.

Remark 3 An exploration noise is added to the input of the system (2)–(3) during the learning
process of Algorithm 2. Such an input is chosen to satisfy the rank condition (23)—which is similar
to the condition of persistent excitation. The noise selected can be a random noise or a summation
of sinusoidal signals with distinct frequencies, see10, 12, 16 and references therein.

IMPLEMENTATION

In this section, the simulation of the autonomous satellite docking is implemented using MAT-
LAB, and the results are presented. The system to be considered is assumed to be under J2 Oblate-
ness perturbation, which is modeled as a disturbance injected into the system. The dynamics con-
sidered in this paper are based on the work done in.60 In this we consider the disturbances to be
created by the by the exosystem. The system is described in the following form:

ẍ− 2n̄cẏ− (5c2 − 2)n̄2x = −3n̄2J2
R2
e

rref
(
1

2
− 3 sin2 (i) sin2 (n̄ct)

2
− 1 + 3 cos (2i)

8
), (25)

ÿ + 2n̄ẋ = −3n̄2J2
R2
e

rref
sin2 (i) sin2 (n̄ct) cos (n̄ct), (26)

z̈ + n̄2z = −3n̄2J2
R2
e

rref
sin (i) sin (n̄ct) cos (i), (27)

where n̄ is the mean orbital rate, Re is the radius of the earth, rref is the position of the reference
orbit, t is the time, and i is the angle of incidence. The system in (25)-(27) can be reformulated and
described in the following form:

ẍ− 2n̄cẏ− (5c2 − 2)n̄2x = −3n̄2J2
R2
e

rref
Q1, (28)

ÿ + 2n̄ẋ = −3n̄2J2
R2
e

rref
Q2, (29)

z̈ + n̄2z = −3n̄2J2
R2
e

rref
Q3, (30)

where c ≡
√

1 + s with s = 3J2R2
e

8rref 2
(1 + 3 cos 2i), Q1, Q2 and Q3 are disturbances generated by

the exosystem with |Q1| ≤ 1, |Q2| ≤ 1 and |Q3| ≤ 1. Therefore, the above equations can be
transformed in the form of (1)-(3) by assuming sinusoidal signals are generated by the exosystem
(1) in addition to the tracking signals. Based on (28)–(30), the system matrices can be found as
follows:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(5c2 − 2)n̄2 0 0 0 2n̄c 0
0 0 0 −2n̄ 0 0

0 0 n̄2 0 0 0

 , B =



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (31)

The performed simulations are summarized in the following steps:
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1. An essentially bounded input is applied to deputy satellite along with a non-stabilizing control
policy.

2. State, input and exosystem information are collected along the trajectories of the system de-
scribed in (1)-(2) for the time interval [0, 10](s).

3. The optimal control problem is obtained by solving Problem 2, wherein an optimal state
feedback gain matrix is obtained.

4. The output regulation problem is solved by solving Problem 1, wherein the output regulation
is then achieved.

5. The adaptive optimal output regulation is achieved by applying the optimal feedback-feedforward
matrix designated in (15)

The proposed approach shown in Algorithm 2 is used to learn the optimal feedback-feedforward
control policy to regulate the relative positions. In addition. Instead of using the modelling infor-
mation of the system, we use the online collected data to learn the optimal control policy, which
removes the stringent requirement of knowing the exact physics of the studied system. The data
collection and learning is set to be in the interval [0, 25](s). Last but not least, besides achieving the
asymptotic tracking of the exosystem signals, we are also able to achieve rejection for class of dis-
turbances generated by the exosystem, with minimizing a predefined cost function. For simulation
purposes, we assume the reference signal and the disturbances are generated by the exosystem with
the matrix E defined as follow

E = bdiag
([

0 0.1
−0.1 0

]
,

[
0 0.2
−0.2 0

]
,

[
0 0.3
−0.3 0

]
,

[
0 0.4
−0.4 0

])
(32)

The rest of the matrices are shown below, where Dv represents the disturbances applied to the
system, and −Fv is the tracking signal.

C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , F =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

 , (33)

D =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 −3n̄2J2
R2
e

rref
0 0 −3n̄2J2

R2
e

rref
0 0

0 0 0 0 −3n̄2J2
R2
e

rref
0 0 0

−3n̄2J2
R2
e

rref
0 0 0 0 0 −3n̄2J2

R2
e

rref
0


(34)

The cost function matrices are considered to be Q = 0.05I6 and R = 10I3. Br = 10(r + 1)
and εk = 1

k . The CW parameters are chosen same to those used in,60 where rref = 7000 km and
n̄ = 0.00108 1/s. The altitude of the chief with respect to the center of the earth is chosen to be
6776 km (Low-Earth Orbit).
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RESULTS

For simulation purposes, we assume that the chief is moving in the space in all x, y, and z
directions. In addition, the velocity in each direction is different. Using Algorithm 2, the results are
obtained depicted in Figs. 2-5. In the following, the actual and the learned feedback and feedforward
control gain matrices are shown.

L(35) =

−2.1645 −4.0389 0 0 0.0005 0 0 0
4.0387 −2.1644 0.0061 0 0 0 0 0

0 0 0.8375 −8.0807 0 0 0.003 0


L? =

−2.1644 −4.0387 0 0 0 0 0 0
4.0387 −2.1644 0 0 0 0 0 0

0 0 0.8377 −8.0807 0 0 0 0


It is noticed that the learned control gain matrices are close enough to the optimal actual ones.

In addition, one can realize from Figure 5 that the position of the deputy follows the position of
the chief and the error converges to zero which confirms the completion of the docking procedure.
Figure 2 illustrates the convergence of the learned value matrix to the optimal one. It is noted that the
convergence of the value matrix is done in 5512 iterations. The large number of iterations incurred
by the VI is due to the sublinear convergence rate of VI.16 However, the VI has less computational
complexity comparing to the PI12 which converges in a quadratic convergence rate, but it still needs
a stabilizing control policy to converge.
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Figure 2. The norm of difference between the learned value matrix Pk and P ? at each
iteration k under value iteration Algorithm 2
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CONCLUSION

This work considers the control of autonomous satellite docking by developing a direct adap-
tive optimal control using adaptive dynamic programming (ADP). More specifically, two problems
are considered to guarantee that optimal tracking. First, the output regulation problem is solved
to achieve asymptotic tracking and disturbance rejection. Second, we consider solving the output
regulation problem by adaptive dynamic programming. Therefore, the states and dynamics infor-
mation of the system are not needed in order to compute the optimal feedback-feedforward control
policy. The ADP approach is implemented on an autonomous satellite docking problem by consid-
ering the Clohessy-Wiltshire equation with J2 perturbations, where the problem is reformulated into
an adaptive optimal output regulation problem. The simulation results illustrate the efficacy of the
proposed method.
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