import numpy as np import cv2 import torch import numpy as np from PIL import Image def instantiate_from_config(config): if not "target" in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): import importlib module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def tensor_detail(t): assert type(t) == torch.Tensor print(f"shape: {t.shape} mean: {t.mean():.2f}, std: {t.std():.2f}, min: {t.min():.2f}, max: {t.max():.2f}") def drawRoundRec(draw, color, x, y, w, h, r): drawObject = draw '''Rounds''' drawObject.ellipse((x, y, x + r, y + r), fill=color) drawObject.ellipse((x + w - r, y, x + w, y + r), fill=color) drawObject.ellipse((x, y + h - r, x + r, y + h), fill=color) drawObject.ellipse((x + w - r, y + h - r, x + w, y + h), fill=color) '''rec.s''' drawObject.rectangle((x + r / 2, y, x + w - (r / 2), y + h), fill=color) drawObject.rectangle((x, y + r / 2, x + w, y + h - (r / 2)), fill=color) def do_resize_content(original_image: Image, scale_rate): # resize image content wile retain the original image size if scale_rate != 1: # Calculate the new size after rescaling new_size = tuple(int(dim * scale_rate) for dim in original_image.size) # Resize the image while maintaining the aspect ratio resized_image = original_image.resize(new_size) # Create a new image with the original size and black background padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) padded_image.paste(resized_image, paste_position) return padded_image else: return original_image def add_stroke(img, color=(255, 255, 255), stroke_radius=3): # color in R, G, B format if isinstance(img, Image.Image): assert img.mode == "RGBA" img = cv2.cvtColor(np.array(img), cv2.COLOR_RGBA2BGRA) else: assert img.shape[2] == 4 gray = img[:,:, 3] ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) res = cv2.drawContours(img, contours,-1, tuple(color)[::-1] + (255,), stroke_radius) return Image.fromarray(cv2.cvtColor(res,cv2.COLOR_BGRA2RGBA)) def make_blob(image_size=(512, 512), sigma=0.2): """ make 2D blob image with: I(x, y)=1-\exp \left(-\frac{(x-H / 2)^2+(y-W / 2)^2}{2 \sigma^2 HS}\right) """ import numpy as np H, W = image_size x = np.arange(0, W, 1, float) y = np.arange(0, H, 1, float) x, y = np.meshgrid(x, y) x0 = W // 2 y0 = H // 2 img = 1 - np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2 * H * W)) return (img * 255).astype(np.uint8)