Spaces:
Runtime error
Feature
- VITS语音合成
- VITS语音转换
- HuBert-soft VITS模型
- W2V2 VITS / emotional-vits维度情感模型
- 加载多模型
- 自动识别语言并处理,根据模型的cleaner设置语言类型识别的范围,支持自定义语言类型范围
- 自定义默认参数
- 长文本批处理
- GPU加速推理
- SSML语音合成标记语言(完善中...)
Update Logs
2023.6.5
更换音频编码使用的库,增加flac格式,增加中文对读简单数学公式的支持
2023.5.24
添加dimensional_emotion api,从文件夹加载多个npy文件,Docker添加了Linux/ARM64和Linux/ARM64/v8平台
2023.5.15
增加english_cleaner,需要额外安装espeak才能使用
2023.5.12
增加ssml支持,但仍需完善。重构部分功能,hubert_vits中的speaker_id改为id
2023.5.2
增加w2v2-vits/emotional-vits模型支持,修改了speakers映射表并添加了对应模型支持的语言
2023.4.23
增加api key鉴权,默认禁用,需要在config.py中启用
2023.4.17
修改单语言的cleaner需要标注才会clean,增加GPU加速推理,但需要手动安装gpu推理环境
2023.4.12
项目由MoeGoe-Simple-API更名为vits-simple-api,支持长文本批处理,增加长文本分段阈值max
2023.4.7
增加配置文件可自定义默认参数,本次更新需要手动更新config.py,具体使用方法见config.py
2023.4.6
加入自动识别语种选项auto,lang参数默认修改为auto,自动识别仍有一定缺陷,请自行选择
统一POST请求类型为multipart/form-data
demo
注意不同的id支持的语言可能有所不同。speakers
https://artrajz-vits-simple-api.hf.space/voice/vits?text=你好,こんにちは&id=164
https://artrajz-vits-simple-api.hf.space/voice/vits?text=你知道1+1=几吗?我觉得1+1≠3&id=164&lang=zh
https://artrajz-vits-simple-api.hf.space/voice/vits?text=Difficult the first time, easy the second.&id=4
- 激动:
https://artrajz-vits-simple-api.hf.space/voice/w2v2-vits?text=こんにちは&id=3&emotion=111
- 小声:
https://artrajz-vits-simple-api.hf.space/voice/w2v2-vits?text=こんにちは&id=3&emotion=2077
部署
Docker部署
镜像拉取脚本
bash -c "$(wget -O- https://raw.githubusercontent.com/Artrajz/vits-simple-api/main/vits-simple-api-installer-latest.sh)"
- 目前docker镜像支持的平台
linux/amd64,linux/arm64
- 在拉取完成后,需要导入VITS模型才能使用,请根据以下步骤导入模型。
下载VITS模型
将模型放入/usr/local/vits-simple-api/Model
Folder structure
│ hubert-soft-0d54a1f4.pt
│ model.onnx
│ model.yaml
├─g
│ config.json
│ G_953000.pth
│
├─louise
│ 360_epochs.pth
│ config.json
│
├─Nene_Nanami_Rong_Tang
│ 1374_epochs.pth
│ config.json
│
├─Zero_no_tsukaima
│ 1158_epochs.pth
│ config.json
│
└─npy
25ecb3f6-f968-11ed-b094-e0d4e84af078.npy
all_emotions.npy
修改模型路径
Modify in /usr/local/vits-simple-api/config.py
config.py
# 在此填写模型路径
MODEL_LIST = [
# VITS
[ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"],
[ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"],
[ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"],
# HuBert-VITS (Need to configure HUBERT_SOFT_MODEL)
[ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"],
# W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY)
[ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"],
]
# hubert-vits: hubert soft 编码器
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt"
# w2v2-vits: Dimensional emotion npy file
# 加载单独的npy: ABS_PATH+"/all_emotions.npy
# 加载多个npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"]
# 从文件夹里加载npy: ABS_PATH + "/Model/npy"
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy"
# w2v2-vits: 需要在同一路径下有model.onnx和model.yaml
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml"
启动
docker compose up -d
或者重新执行拉取脚本
镜像更新
重新执行docker镜像拉取脚本即可
虚拟环境部署
Clone
git clone https://github.com/Artrajz/vits-simple-api.git
下载python依赖
推荐使用python的虚拟环境,python版本 >= 3.9
pip install -r requirements.txt
windows下可能安装不了fasttext,可以用以下命令安装,附wheels下载地址
#python3.10 win_amd64
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp310-cp310-win_amd64.whl
#python3.9 win_amd64
pip install https://github.com/Artrajz/archived/raw/main/fasttext/fasttext-0.9.2-cp39-cp39-win_amd64.whl
下载VITS模型
将模型放入 /path/to/vits-simple-api/Model
文件夹结构
├─g
│ config.json
│ G_953000.pth
│
├─louise
│ 360_epochs.pth
│ config.json
│ hubert-soft-0d54a1f4.pt
│
├─Nene_Nanami_Rong_Tang
│ 1374_epochs.pth
│ config.json
│
└─Zero_no_tsukaima
1158_epochs.pth
config.json
修改模型路径
在 /path/to/vits-simple-api/config.py
修改
config.py
# 在此填写模型路径
MODEL_LIST = [
# VITS
[ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/1374_epochs.pth", ABS_PATH + "/Model/Nene_Nanami_Rong_Tang/config.json"],
[ABS_PATH + "/Model/Zero_no_tsukaima/1158_epochs.pth", ABS_PATH + "/Model/Zero_no_tsukaima/config.json"],
[ABS_PATH + "/Model/g/G_953000.pth", ABS_PATH + "/Model/g/config.json"],
# HuBert-VITS (Need to configure HUBERT_SOFT_MODEL)
[ABS_PATH + "/Model/louise/360_epochs.pth", ABS_PATH + "/Model/louise/config.json"],
# W2V2-VITS (Need to configure DIMENSIONAL_EMOTION_NPY)
[ABS_PATH + "/Model/w2v2-vits/1026_epochs.pth", ABS_PATH + "/Model/w2v2-vits/config.json"],
]
# hubert-vits: hubert soft 编码器
HUBERT_SOFT_MODEL = ABS_PATH + "/Model/hubert-soft-0d54a1f4.pt"
# w2v2-vits: Dimensional emotion npy file
# 加载单独的npy: ABS_PATH+"/all_emotions.npy
# 加载多个npy: [ABS_PATH + "/emotions1.npy", ABS_PATH + "/emotions2.npy"]
# 从文件夹里加载npy: ABS_PATH + "/Model/npy"
DIMENSIONAL_EMOTION_NPY = ABS_PATH + "/Model/npy"
# w2v2-vits: 需要在同一路径下有model.onnx和model.yaml
DIMENSIONAL_EMOTION_MODEL = ABS_PATH + "/Model/model.yaml"
启动
python app.py
GPU 加速
windows
安装CUDA
查看显卡最高支持CUDA的版本
nvidia-smi
以CUDA11.7为例,官网
安装GPU版pytorch
CUDA11.7对应的pytorch是用这个命令安装
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117
对应版本的命令可以在官网找到
Linux
安装过程类似,但我没有相应的环境所以没办法测试
Openjtalk安装问题
如果你是arm64架构的平台,由于pypi官网上没有arm64对应的whl,可能安装会出现一些问题,你可以使用我构建的whl来安装
pip install openjtalk==0.3.0.dev2 --index-url https://pypi.artrajz.cn/simple
或者是自己手动构建一个whl,可以根据教程来构建
API
GET
speakers list
GET http://127.0.0.1:23456/voice/speakers
返回id对应角色的映射表
voice vits
GET http://127.0.0.1:23456/voice/vits?text=text
其他参数不指定时均为默认值
GET http://127.0.0.1:23456/voice/vits?text=[ZH]text[ZH][JA]text[JA]&lang=mix
lang=mix时文本要标注
GET http://127.0.0.1:23456/voice/vits?text=text&id=142&format=wav&lang=zh&length=1.4
文本为text,角色id为142,音频格式为wav,文本语言为zh,语音长度为1.4,其余参数默认
check
POST
- python
import re
import requests
import os
import random
import string
from requests_toolbelt.multipart.encoder import MultipartEncoder
abs_path = os.path.dirname(__file__)
base = "http://127.0.0.1:23456"
# 映射表
def voice_speakers():
url = f"{base}/voice/speakers"
res = requests.post(url=url)
json = res.json()
for i in json:
print(i)
for j in json[i]:
print(j)
return json
# 语音合成 voice vits
def voice_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"max": str(max)
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
# 语音转换 hubert-vits
def voice_hubert_vits(upload_path, id, format="wav", length=1, noise=0.667, noisew=0.8):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
"id": str(id),
"format": format,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/hubert-vits"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
# 维度情感模型 w2v2-vits
def voice_w2v2_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50, emotion=0):
fields = {
"text": text,
"id": str(id),
"format": format,
"lang": lang,
"length": str(length),
"noise": str(noise),
"noisew": str(noisew),
"max": str(max),
"emotion": str(emotion)
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/w2v2-vits"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
# 语音转换 同VITS模型内角色之间的音色转换
def voice_conversion(upload_path, original_id, target_id):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
"original_id": str(original_id),
"target_id": str(target_id),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/conversion"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
def voice_ssml(ssml):
fields = {
"ssml": ssml,
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/ssml"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
def voice_dimensional_emotion(upload_path):
upload_name = os.path.basename(upload_path)
upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg
with open(upload_path, 'rb') as upload_file:
fields = {
"upload": (upload_name, upload_file, upload_type),
}
boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16))
m = MultipartEncoder(fields=fields, boundary=boundary)
headers = {"Content-Type": m.content_type}
url = f"{base}/voice/dimension-emotion"
res = requests.post(url=url, data=m, headers=headers)
fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0]
path = f"{abs_path}/{fname}"
with open(path, "wb") as f:
f.write(res.content)
print(path)
return path
API KEY
在config.py中设置API_KEY_ENABLED = True
以启用,api key填写:API_KEY = "api-key"
。
启用后,GET请求中使用需要增加参数api_key,POST请求中使用需要在header中添加参数X-API-KEY
。
Parameter
VITS语音合成
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
合成文本 | text | true | str | ||
角色id | id | false | 0 | int | |
音频格式 | format | false | wav | str | 支持wav,ogg,silk,mp3,flac |
文本语言 | lang | false | auto | str | auto为自动识别语言模式,也是默认模式。lang=mix时,文本应该用[ZH] 或 [JA] 包裹。方言无法自动识别。 |
语音长度/语速 | length | false | 1.0 | float | 调节语音长度,相当于调节语速,该数值越大语速越慢 |
噪声 | noise | false | 0.667 | float | |
噪声偏差 | noisew | false | 0.8 | float | |
分段阈值 | max | false | 50 | int | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段。 |
VITS 语音转换
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
上传音频 | upload | true | file | wav or ogg | |
源角色id | original_id | true | int | 上传文件所使用的角色id | |
目标角色id | target_id | true | int | 要转换的目标角色id |
HuBert-VITS 语音转换
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
上传音频 | upload | true | file | ||
目标角色id | id | true | int | ||
音频格式 | format | true | str | wav,ogg,silk | |
语音长度/语速 | length | true | float | 调节语音长度,相当于调节语速,该数值越大语速越慢 | |
噪声 | noise | true | float | ||
噪声偏差 | noisew | true | float |
Dimensional emotion
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
上传音频 | upload | true | file | 返回存储维度情感向量的npy文件 |
W2V2-VITS
Name | Parameter | Is must | Default | Type | Instruction |
---|---|---|---|---|---|
合成文本 | text | true | str | ||
角色id | id | false | 0 | int | |
音频格式 | format | false | wav | str | 支持wav,ogg,silk,mp3,flac |
文本语言 | lang | false | auto | str | auto为自动识别语言模式,也是默认模式。lang=mix时,文本应该用[ZH] 或 [JA] 包裹。方言无法自动识别。 |
语音长度/语速 | length | false | 1.0 | float | 调节语音长度,相当于调节语速,该数值越大语速越慢 |
噪声 | noise | false | 0.667 | float | |
噪声偏差 | noisew | false | 0.8 | float | |
分段阈值 | max | false | 50 | int | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段。 |
维度情感 | emotion | false | 0 | int | 范围取决于npy情感参考文件,如innnky的all_emotions.npy模型范围是0-5457 |
SSML语音合成标记语言
目前支持的元素与属性
speak
元素
Attribute | Description | Is must |
---|---|---|
id | 默认值从config.py 中读取 |
false |
lang | 默认值从config.py 中读取 |
false |
length | 默认值从config.py 中读取 |
false |
noise | 默认值从config.py 中读取 |
false |
noisew | 默认值从config.py 中读取 |
false |
max | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段,这里默认为0。 | false |
model | 默认为vits,可选w2v2-vits ,emotion-vits |
false |
emotion | 只有用w2v2-vits 或emotion-vits 时emotion 才生效,范围取决于npy情感参考文件 |
false |
voice
元素
优先级大于speak
Attribute | Description | Is must |
---|---|---|
id | 默认值从config.py 中读取 |
false |
lang | 默认值从config.py 中读取 |
false |
length | 默认值从config.py 中读取 |
false |
noise | 默认值从config.py 中读取 |
false |
noisew | 默认值从config.py 中读取 |
false |
max | 按标点符号分段,加起来大于max时为一段文本。max<=0表示不分段,这里默认为0。 | false |
model | 默认为vits,可选w2v2-vits ,emotion-vits |
false |
emotion | 只有用w2v2-vits 或emotion-vits 时emotion 才会生效 |
false |
break
元素
Attribute | Description | Is must |
---|---|---|
strength | x-weak,weak,medium(默认值),strong,x-strong | false |
time | 暂停的绝对持续时间,以秒为单位(例如 2s )或以毫秒为单位(例如 500ms )。 有效值的范围为 0 到 5000 毫秒。 如果设置的值大于支持的最大值,则服务将使用 5000ms 。 如果设置了 time 属性,则会忽略 strength 属性。 |
false |
Strength | Relative Duration |
---|---|
x-weak | 250 毫秒 |
weak | 500 毫秒 |
Medium | 750 毫秒 |
Strong | 1000 毫秒 |
x-strong | 1250 毫秒 |
示例
<speak lang="zh" format="mp3" length="1.2">
<voice id="92" >这几天心里颇不宁静。</voice>
<voice id="125">今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。</voice>
<voice id="142">月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了;</voice>
<voice id="98">妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。</voice>
<voice id="120">我悄悄地披了大衫,带上门出去。</voice><break time="2s"/>
<voice id="121">沿着荷塘,是一条曲折的小煤屑路。</voice>
<voice id="122">这是一条幽僻的路;白天也少人走,夜晚更加寂寞。</voice>
<voice id="123">荷塘四面,长着许多树,蓊蓊郁郁的。</voice>
<voice id="124">路的一旁,是些杨柳,和一些不知道名字的树。</voice>
<voice id="125">没有月光的晚上,这路上阴森森的,有些怕人。</voice>
<voice id="126">今晚却很好,虽然月光也还是淡淡的。</voice><break time="2s"/>
<voice id="127">路上只我一个人,背着手踱着。</voice>
<voice id="128">这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。</voice>
<voice id="129">我爱热闹,也爱冷静;<break strength="x-weak"/>爱群居,也爱独处。</voice>
<voice id="130">像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。</voice>
<voice id="131">白天里一定要做的事,一定要说的话,现在都可不理。</voice>
<voice id="132">这是独处的妙处,我且受用这无边的荷香月色好了。</voice>
</speak>
交流平台
现在只有 Q群
鸣谢
- vits:https://github.com/jaywalnut310/vits
- MoeGoe:https://github.com/CjangCjengh/MoeGoe
- emotional-vits:https://github.com/innnky/emotional-vits
- vits-uma-genshin-honkai:https://huggingface.co/spaces/zomehwh/vits-uma-genshin-honkai