# Bismillahir Rahmaanir Raheem # Almadadh Ya Gause Radi Allahu Ta'alah Anh - Ameen from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # load the trained fast ai model for predictions learn = load_learner('model.pkl') # define the function to call categories = ('Dog', 'Cat') def predict(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) title = "Cat or Dog Predictor" description = "A cat or dog predictor model trained on the Pets dataset using ResNet18 via fast.ai." article = "
Cat or Dog Predictor. Zakia Salod. 2022.
" image = gr.inputs.Image(shape=(512, 512)) label = gr.outputs.Label() examples = [ ['cat1.jpg'], ['dog1.jpg'], ['cat2.jpg'], ['dog2.jpg'], ['cat3.jpg'], ['dog3.jpg'], ['cat4.jpg'], ['dog4.jpg'], ] interpretation = 'default' enable_queue = True iface = gr.Interface( fn=predict, title=title, description=description, article=article, inputs=image, outputs=label, theme="default", examples=examples, interpretation=interpretation, enable_queue=enable_queue ) iface.launch(inline=False)