Spaces:
Sleeping
Sleeping
File size: 60,255 Bytes
f572e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 |
"""
pdbfixer.py: Fixes problems in PDB files
This is part of the OpenMM molecular simulation toolkit originating from
Simbios, the NIH National Center for Physics-Based Simulation of
Biological Structures at Stanford, funded under the NIH Roadmap for
Medical Research, grant U54 GM072970. See https://simtk.org.
Portions copyright (c) 2013-2023 Stanford University and the Authors.
Authors: Peter Eastman
Contributors:
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
from __future__ import absolute_import
__author__ = "Peter Eastman"
__version__ = "1.7"
import openmm as mm
import openmm.app as app
import openmm.unit as unit
from openmm.app.internal.pdbstructure import PdbStructure
from openmm.app.internal.pdbx.reader.PdbxReader import PdbxReader
from openmm.app.element import hydrogen, oxygen
from openmm.app.forcefield import NonbondedGenerator
# Support Cythonized functions in OpenMM 7.3
# and also implementations in older versions.
try:
from openmm.app.internal import compiled
matchResidue = compiled.matchResidueToTemplate
except ImportError:
matchResidue = app.forcefield._matchResidue
import numpy as np
import numpy.linalg as lin
import sys
import os
import os.path
import math
from pkg_resources import resource_filename
if sys.version_info >= (3,0):
from urllib.request import urlopen
from io import StringIO
else:
from urllib2 import urlopen
from cStringIO import StringIO
substitutions = {
'2AS':'ASP', '3AH':'HIS', '5HP':'GLU', '5OW':'LYS', 'ACL':'ARG', 'AGM':'ARG', 'AIB':'ALA', 'ALM':'ALA', 'ALO':'THR', 'ALY':'LYS', 'ARM':'ARG',
'ASA':'ASP', 'ASB':'ASP', 'ASK':'ASP', 'ASL':'ASP', 'ASQ':'ASP', 'AYA':'ALA', 'BCS':'CYS', 'BHD':'ASP', 'BMT':'THR', 'BNN':'ALA',
'BUC':'CYS', 'BUG':'LEU', 'C5C':'CYS', 'C6C':'CYS', 'CAS':'CYS', 'CCS':'CYS', 'CEA':'CYS', 'CGU':'GLU', 'CHG':'ALA', 'CLE':'LEU', 'CME':'CYS',
'CSD':'ALA', 'CSO':'CYS', 'CSP':'CYS', 'CSS':'CYS', 'CSW':'CYS', 'CSX':'CYS', 'CXM':'MET', 'CY1':'CYS', 'CY3':'CYS', 'CYG':'CYS',
'CYM':'CYS', 'CYQ':'CYS', 'DAH':'PHE', 'DAL':'ALA', 'DAR':'ARG', 'DAS':'ASP', 'DCY':'CYS', 'DGL':'GLU', 'DGN':'GLN', 'DHA':'ALA',
'DHI':'HIS', 'DIL':'ILE', 'DIV':'VAL', 'DLE':'LEU', 'DLY':'LYS', 'DNP':'ALA', 'DPN':'PHE', 'DPR':'PRO', 'DSN':'SER', 'DSP':'ASP',
'DTH':'THR', 'DTR':'TRP', 'DTY':'TYR', 'DVA':'VAL', 'EFC':'CYS', 'FLA':'ALA', 'FME':'MET', 'GGL':'GLU', 'GL3':'GLY', 'GLZ':'GLY',
'GMA':'GLU', 'GSC':'GLY', 'HAC':'ALA', 'HAR':'ARG', 'HIC':'HIS', 'HIP':'HIS', 'HMR':'ARG', 'HPQ':'PHE', 'HTR':'TRP', 'HYP':'PRO',
'IAS':'ASP', 'IIL':'ILE', 'IYR':'TYR', 'KCX':'LYS', 'LLP':'LYS', 'LLY':'LYS', 'LTR':'TRP', 'LYM':'LYS', 'LYZ':'LYS', 'MAA':'ALA', 'MEN':'ASN',
'MHS':'HIS', 'MIS':'SER', 'MK8':'LEU', 'MLE':'LEU', 'MPQ':'GLY', 'MSA':'GLY', 'MSE':'MET', 'MVA':'VAL', 'NEM':'HIS', 'NEP':'HIS', 'NLE':'LEU',
'NLN':'LEU', 'NLP':'LEU', 'NMC':'GLY', 'OAS':'SER', 'OCS':'CYS', 'OMT':'MET', 'PAQ':'TYR', 'PCA':'GLU', 'PEC':'CYS', 'PHI':'PHE',
'PHL':'PHE', 'PR3':'CYS', 'PRR':'ALA', 'PTR':'TYR', 'PYX':'CYS', 'SAC':'SER', 'SAR':'GLY', 'SCH':'CYS', 'SCS':'CYS', 'SCY':'CYS',
'SEL':'SER', 'SEP':'SER', 'SET':'SER', 'SHC':'CYS', 'SHR':'LYS', 'SMC':'CYS', 'SOC':'CYS', 'STY':'TYR', 'SVA':'SER', 'TIH':'ALA',
'TPL':'TRP', 'TPO':'THR', 'TPQ':'ALA', 'TRG':'LYS', 'TRO':'TRP', 'TYB':'TYR', 'TYI':'TYR', 'TYQ':'TYR', 'TYS':'TYR', 'TYY':'TYR'
}
proteinResidues = ['ALA', 'ASN', 'CYS', 'GLU', 'HIS', 'LEU', 'MET', 'PRO', 'THR', 'TYR', 'ARG', 'ASP', 'GLN', 'GLY', 'ILE', 'LYS', 'PHE', 'SER', 'TRP', 'VAL']
rnaResidues = ['A', 'G', 'C', 'U', 'I']
dnaResidues = ['DA', 'DG', 'DC', 'DT', 'DI']
class Sequence(object):
"""Sequence holds the sequence of a chain, as specified by SEQRES records."""
def __init__(self, chainId, residues):
self.chainId = chainId
self.residues = residues
class ModifiedResidue(object):
"""ModifiedResidue holds information about a modified residue, as specified by a MODRES record."""
def __init__(self, chainId, number, residueName, standardName):
self.chainId = chainId
self.number = number
self.residueName = residueName
self.standardName = standardName
def _guessFileFormat(file, filename):
"""Guess whether a file is PDB or PDBx/mmCIF based on its filename and contents."""
filename = filename.lower()
if '.pdbx' in filename or '.cif' in filename:
return 'pdbx'
if '.pdb' in filename:
return 'pdb'
for line in file:
if line.startswith('data_') or line.startswith('loop_'):
file.seek(0)
return 'pdbx'
if line.startswith('HEADER') or line.startswith('REMARK') or line.startswith('TITLE '):
file.seek(0)
return 'pdb'
# It's certainly not a valid PDBx/mmCIF. Guess that it's a PDB.
file.seek(0)
return 'pdb'
def _overlayPoints(points1, points2):
"""Given two sets of points, determine the translation and rotation that matches them as closely as possible.
Parameters
----------
points1 (numpy array of openmm.unit.Quantity with units compatible with distance) - reference set of coordinates
points2 (numpy array of openmm.unit.Quantity with units compatible with distance) - set of coordinates to be rotated
Returns
-------
translate2 - vector to translate points2 by in order to center it
rotate - rotation matrix to apply to centered points2 to map it on to points1
center1 - center of points1
Notes
-----
This is based on W. Kabsch, Acta Cryst., A34, pp. 828-829 (1978).
"""
if len(points1) == 0:
return (mm.Vec3(0, 0, 0), np.identity(3), mm.Vec3(0, 0, 0))
if len(points1) == 1:
return (points1[0], np.identity(3), -1*points2[0])
# Compute centroids.
center1 = unit.sum(points1)/float(len(points1))
center2 = unit.sum(points2)/float(len(points2))
# Compute R matrix.
R = np.zeros((3, 3))
for p1, p2 in zip(points1, points2):
x = p1-center1
y = p2-center2
for i in range(3):
for j in range(3):
R[i][j] += y[i]*x[j]
# Use an SVD to compute the rotation matrix.
(u, s, v) = lin.svd(R)
return (-1*center2, np.dot(u, v).transpose(), center1)
def _findUnoccupiedDirection(point, positions):
"""Given a point in space and a list of atom positions, find the direction in which the local density of atoms is lowest."""
point = point.value_in_unit(unit.nanometers)
direction = mm.Vec3(0, 0, 0)
for pos in positions.value_in_unit(unit.nanometers):
delta = pos-point
distance = unit.norm(delta)
if distance > 0.1:
distance2 = distance*distance
direction -= delta/(distance2*distance2)
direction /= unit.norm(direction)
return direction
class PDBFixer(object):
"""PDBFixer implements many tools for fixing problems in PDB and PDBx/mmCIF files.
"""
def __init__(self, filename=None, pdbfile=None, pdbxfile=None, url=None, pdbid=None):
"""Create a new PDBFixer instance to fix problems in a PDB or PDBx/mmCIF file.
Parameters
----------
filename : str, optional, default=None
The name of the file to read. The format is determined automatically based on the filename extension, or if
that is ambiguous, by looking at the file content.
pdbfile : file, optional, default=None
A file-like object from which the PDB file is to be read.
The file is not closed after reading.
pdbxfile : file, optional, default=None
A file-like object from which the PDBx/mmCIF file is to be read.
The file is not closed after reading.
url : str, optional, default=None
A URL specifying the internet location from which the file contents should be retrieved. The format is
determined automatically by looking for a filename extension in the URL, or if that is ambiguous, by looking
at the file content.
pdbid : str, optional, default=None
A four-letter PDB code specifying the structure to be retrieved from the RCSB.
Notes
-----
Only one of structure, filename, pdbfile, pdbxfile, url, or pdbid may be specified or an exception will be thrown.
Examples
--------
Start from a filename.
>>> filename = resource_filename('pdbfixer', 'tests/data/test.pdb')
>>> fixer = PDBFixer(filename=filename)
Start from a file object.
>>> with open(filename) as f:
... fixer = PDBFixer(pdbfile=f)
Start from a URL.
>>> fixer = PDBFixer(url='http://www.rcsb.org/pdb/files/1VII.pdb')
Start from a PDB code.
>>> fixer = PDBFixer(pdbid='1VII')
"""
# Check to make sure only one option has been specified.
if bool(filename) + bool(pdbfile) + bool(pdbxfile) + bool(url) + bool(pdbid) != 1:
raise Exception("Exactly one option [filename, pdbfile, pdbxfile, url, pdbid] must be specified.")
self.source = None
if pdbid:
# A PDB id has been specified.
url = 'http://www.rcsb.org/pdb/files/%s.pdb' % pdbid
if filename:
# A local file has been specified.
self.source = filename
file = open(filename, 'r')
if _guessFileFormat(file, filename) == 'pdbx':
self._initializeFromPDBx(file)
else:
self._initializeFromPDB(file)
file.close()
elif pdbfile:
# A file-like object has been specified.
self._initializeFromPDB(pdbfile)
elif pdbxfile:
# A file-like object has been specified.
self._initializeFromPDBx(pdbxfile)
elif url:
# A URL has been specified.
self.source = url
file = urlopen(url)
contents = file.read().decode('utf-8')
file.close()
file = StringIO(contents)
if _guessFileFormat(file, url) == 'pdbx':
self._initializeFromPDBx(contents)
else:
self._initializeFromPDB(StringIO(contents))
# Check the structure has some atoms in it.
atoms = list(self.topology.atoms())
if len(atoms) == 0:
raise Exception("Structure contains no atoms.")
# Load the templates.
self.templates = {}
templatesPath = os.path.join(os.path.dirname(__file__), 'templates')
for file in os.listdir(templatesPath):
templatePdb = app.PDBFile(os.path.join(templatesPath, file))
name = next(templatePdb.topology.residues()).name
self.templates[name] = templatePdb
def _initializeFromPDB(self, file):
"""Initialize this object by reading a PDB file."""
structure = PdbStructure(file)
pdb = app.PDBFile(structure)
self.topology = pdb.topology
self.positions = pdb.positions
self.sequences = [Sequence(s.chain_id, s.residues) for s in structure.sequences]
self.modifiedResidues = [ModifiedResidue(r.chain_id, r.number, r.residue_name, r.standard_name) for r in structure.modified_residues]
def _initializeFromPDBx(self, file):
"""Initialize this object by reading a PDBx/mmCIF file."""
pdbx = app.PDBxFile(file)
self.topology = pdbx.topology
self.positions = pdbx.positions
# PDBxFile doesn't record the information about sequence or modified residues, so we need to read them separately.
file.seek(0)
reader = PdbxReader(file)
data = []
reader.read(data)
block = data[0]
# Load the sequence data.
sequenceData = block.getObj('entity_poly_seq')
sequences = {}
if sequenceData is not None:
entityIdCol = sequenceData.getAttributeIndex('entity_id')
residueCol = sequenceData.getAttributeIndex('mon_id')
for row in sequenceData.getRowList():
entityId = row[entityIdCol]
residue = row[residueCol]
if entityId not in sequences:
sequences[entityId] = []
sequences[entityId].append(residue)
# Sequences are stored by "entity". There could be multiple chains that are all the same entity, so we need to
# convert from entities to chains.
asymData = block.getObj('struct_asym')
self.sequences = []
if asymData is not None:
asymIdCol = asymData.getAttributeIndex('id')
entityIdCol = asymData.getAttributeIndex('entity_id')
for row in asymData.getRowList():
asymId = row[asymIdCol]
entityId = row[entityIdCol]
if entityId in sequences:
self.sequences.append(Sequence(asymId, sequences[entityId]))
# Load the modified residues.
modData = block.getObj('pdbx_struct_mod_residue')
self.modifiedResidues = []
if modData is not None:
asymIdCol = modData.getAttributeIndex('label_asym_id')
resNameCol = modData.getAttributeIndex('label_comp_id')
resNumCol = modData.getAttributeIndex('auth_seq_id')
standardResCol = modData.getAttributeIndex('parent_comp_id')
if -1 not in (asymIdCol, resNameCol, resNumCol, standardResCol):
for row in modData.getRowList():
self.modifiedResidues.append(ModifiedResidue(row[asymIdCol], int(row[resNumCol]), row[resNameCol], row[standardResCol]))
def _addAtomsToTopology(self, heavyAtomsOnly, omitUnknownMolecules):
"""Create a new Topology in which missing atoms have been added.
Parameters
----------
heavyAtomsOnly : bool
If True, only heavy atoms will be added to the topology.
omitUnknownMolecules : bool
If True, unknown molecules will be omitted from the topology.
Returns
-------
newTopology : openmm.app.Topology
A new Topology object containing atoms from the old.
newPositions : list of openmm.unit.Quantity with units compatible with nanometers
Atom positions for the new Topology object.
newAtoms : openmm.app.Topology.Atom
New atom objects.
existingAtomMap : dict
Mapping from old atoms to new atoms.
"""
newTopology = app.Topology()
newPositions = []*unit.nanometer
newAtoms = []
existingAtomMap = {}
addedAtomMap = {}
addedOXT = []
residueCenters = [self._computeResidueCenter(res).value_in_unit(unit.nanometers) for res in self.topology.residues()]*unit.nanometers
for chain in self.topology.chains():
if omitUnknownMolecules and not any(residue.name in self.templates for residue in chain.residues()):
continue
chainResidues = list(chain.residues())
newChain = newTopology.addChain(chain.id)
for indexInChain, residue in enumerate(chain.residues()):
# Insert missing residues here.
if (chain.index, indexInChain) in self.missingResidues:
insertHere = self.missingResidues[(chain.index, indexInChain)]
endPosition = self._computeResidueCenter(residue)
if indexInChain > 0:
startPosition = self._computeResidueCenter(chainResidues[indexInChain-1])
loopDirection = _findUnoccupiedDirection((startPosition+endPosition)/2, residueCenters)
else:
outward = _findUnoccupiedDirection(endPosition, residueCenters)*unit.nanometers
norm = unit.norm(outward)
if norm > 0*unit.nanometer:
outward *= len(insertHere)*0.5*unit.nanometer/norm
startPosition = endPosition+outward
loopDirection = None
firstIndex = int(residue.id)-len(insertHere)
self._addMissingResiduesToChain(newChain, insertHere, startPosition, endPosition, loopDirection, residue, newAtoms, newPositions, firstIndex)
# Create the new residue and add existing heavy atoms.
newResidue = newTopology.addResidue(residue.name, newChain, residue.id, residue.insertionCode)
for atom in residue.atoms():
if not heavyAtomsOnly or (atom.element is not None and atom.element != hydrogen):
if atom.name == 'OXT' and (chain.index, indexInChain+1) in self.missingResidues:
continue # Remove terminal oxygen, since we'll add more residues after this one
newAtom = newTopology.addAtom(atom.name, atom.element, newResidue)
existingAtomMap[atom] = newAtom
newPositions.append(self.positions[atom.index])
if residue in self.missingAtoms:
# Find corresponding atoms in the residue and the template.
template = self.templates[residue.name]
atomPositions = dict((atom.name, self.positions[atom.index]) for atom in residue.atoms())
points1 = []
points2 = []
for atom in template.topology.atoms():
if atom.name in atomPositions:
points1.append(atomPositions[atom.name].value_in_unit(unit.nanometer))
points2.append(template.positions[atom.index].value_in_unit(unit.nanometer))
# Compute the optimal transform to overlay them.
(translate2, rotate, translate1) = _overlayPoints(points1, points2)
# Add the missing atoms.
addedAtomMap[residue] = {}
for atom in self.missingAtoms[residue]:
newAtom = newTopology.addAtom(atom.name, atom.element, newResidue)
newAtoms.append(newAtom)
addedAtomMap[residue][atom] = newAtom
templatePosition = template.positions[atom.index].value_in_unit(unit.nanometer)
newPositions.append((mm.Vec3(*np.dot(rotate, templatePosition+translate2))+translate1)*unit.nanometer)
if residue in self.missingTerminals:
terminalsToAdd = self.missingTerminals[residue]
else:
terminalsToAdd = None
# If this is the end of the chain, add any missing residues that come after it.
if residue == chainResidues[-1] and (chain.index, indexInChain+1) in self.missingResidues:
insertHere = self.missingResidues[(chain.index, indexInChain+1)]
if len(insertHere) > 0:
startPosition = self._computeResidueCenter(residue)
outward = _findUnoccupiedDirection(startPosition, residueCenters)*unit.nanometers
norm = unit.norm(outward)
if norm > 0*unit.nanometer:
outward *= len(insertHere)*0.5*unit.nanometer/norm
endPosition = startPosition+outward
firstIndex = int(residue.id)+1
self._addMissingResiduesToChain(newChain, insertHere, startPosition, endPosition, None, residue, newAtoms, newPositions, firstIndex)
newResidue = list(newChain.residues())[-1]
if newResidue.name in proteinResidues:
terminalsToAdd = ['OXT']
else:
terminalsToAdd = None
# If a terminal OXT is missing, add it.
if terminalsToAdd is not None:
atomPositions = dict((atom.name, newPositions[atom.index].value_in_unit(unit.nanometer)) for atom in newResidue.atoms())
if 'OXT' in terminalsToAdd:
newAtom = newTopology.addAtom('OXT', oxygen, newResidue)
newAtoms.append(newAtom)
addedOXT.append(newAtom)
d_ca_o = atomPositions['O']-atomPositions['CA']
d_ca_c = atomPositions['C']-atomPositions['CA']
d_ca_c /= unit.sqrt(unit.dot(d_ca_c, d_ca_c))
v = d_ca_o - d_ca_c*unit.dot(d_ca_c, d_ca_o)
newPositions.append((atomPositions['O']+2*v)*unit.nanometer)
newTopology.setUnitCellDimensions(self.topology.getUnitCellDimensions())
newTopology.createStandardBonds()
newTopology.createDisulfideBonds(newPositions)
# Add the bonds between atoms in heterogens.
for a1,a2 in self.topology.bonds():
if a1 in existingAtomMap and a2 in existingAtomMap and (a1.residue.name not in app.Topology._standardBonds or a2.residue.name not in app.Topology._standardBonds):
newTopology.addBond(existingAtomMap[a1], existingAtomMap[a2])
# Return the results.
return (newTopology, newPositions, newAtoms, existingAtomMap)
def _computeResidueCenter(self, residue):
"""Compute the centroid of a residue."""
return unit.sum([self.positions[atom.index] for atom in residue.atoms()])/len(list(residue.atoms()))
def _addMissingResiduesToChain(self, chain, residueNames, startPosition, endPosition, loopDirection, orientTo, newAtoms, newPositions, firstIndex):
"""Add a series of residues to a chain."""
orientToPositions = dict((atom.name, self.positions[atom.index]) for atom in orientTo.atoms())
if loopDirection is None:
loopDirection = mm.Vec3(0, 0, 0)
# We'll add the residues in an arc connecting the endpoints. Figure out the height of that arc.
length = unit.norm(endPosition-startPosition)
numResidues = len(residueNames)
if length > numResidues*0.3*unit.nanometers:
loopHeight = 0*unit.nanometers
else:
loopHeight = (numResidues*0.3*unit.nanometers-length)/2
# Add the residues.
for i, residueName in enumerate(residueNames):
template = self.templates[residueName]
# Find a translation that best matches the adjacent residue.
points1 = []
points2 = []
for atom in template.topology.atoms():
if atom.name in orientToPositions:
points1.append(orientToPositions[atom.name].value_in_unit(unit.nanometer))
points2.append(template.positions[atom.index].value_in_unit(unit.nanometer))
(translate2, rotate, translate1) = _overlayPoints(points1, points2)
# Create the new residue.
newResidue = chain.topology.addResidue(residueName, chain, "%d" % ((firstIndex+i)%10000))
fraction = (i+1.0)/(numResidues+1.0)
translate = startPosition + (endPosition-startPosition)*fraction + loopHeight*math.sin(fraction*math.pi)*loopDirection
templateAtoms = list(template.topology.atoms())
if newResidue == next(chain.residues()):
templateAtoms = [atom for atom in templateAtoms if atom.name not in ('P', 'OP1', 'OP2')]
for atom in templateAtoms:
newAtom = chain.topology.addAtom(atom.name, atom.element, newResidue)
newAtoms.append(newAtom)
templatePosition = template.positions[atom.index].value_in_unit(unit.nanometer)
newPositions.append(mm.Vec3(*np.dot(rotate, templatePosition))*unit.nanometer+translate)
def removeChains(self, chainIndices=None, chainIds=None):
"""Remove a set of chains from the structure.
Parameters
----------
chainIndices : list of int, optional, default=None
List of indices of chains to remove.
chainIds : list of str, optional, default=None
List of chain ids of chains to remove.
Examples
--------
Load a PDB file with two chains and eliminate the second chain.
>>> fixer = PDBFixer(pdbid='4J7F')
>>> fixer.removeChains(chainIndices=[1])
Load a PDB file with two chains and eliminate chains named 'B' and 'D'.
>>> fixer = PDBFixer(pdbid='4J7F')
>>> fixer.removeChains(chainIds=['B','D'])
"""
modeller = app.Modeller(self.topology, self.positions)
allChains = list(self.topology.chains())
if chainIndices == None:
chainIndices = list()
if chainIds != None:
# Add all chains that match the selection to the list.
for (chainNumber, chain) in enumerate(allChains):
if chain.id in chainIds:
chainIndices.append(chainNumber)
# Ensure only unique entries remain.
chainIndices = list(set(chainIndices))
# Do nothing if no chains will be deleted.
if len(chainIndices) == 0:
return
modeller.delete(allChains[i] for i in chainIndices)
self.topology = modeller.topology
self.positions = modeller.positions
return
def findMissingResidues(self):
"""Find residues that are missing from the structure.
The results are stored into the missingResidues field, which is a dict. Each key is a tuple consisting of
the index of a chain, and the residue index within that chain at which new residues should be inserted.
The corresponding value is a list of the names of residues to insert there.
Examples
--------
>>> fixer = PDBFixer(pdbid='1VII')
>>> fixer.findMissingResidues()
>>> missing_residues = fixer.missingResidues
"""
chains = [c for c in self.topology.chains() if len(list(c.residues())) > 0]
chainWithGaps = {}
# Find the sequence of each chain, with gaps for missing residues.
for chain in chains:
residues = list(chain.residues())
ids = [int(r.id) for r in residues]
for i, res in enumerate(residues):
if res.insertionCode not in ('', ' '):
for j in range(i, len(residues)):
ids[j] += 1
minResidue = min(ids)
maxResidue = max(ids)
chainWithGaps[chain] = [None]*(maxResidue-minResidue+1)
for r, id in zip(residues, ids):
chainWithGaps[chain][id-minResidue] = r.name
# Try to find the chain that matches each sequence.
chainSequence = {}
chainOffset = {}
for sequence in self.sequences:
for chain in chains:
if chain.id != sequence.chainId:
continue
if chain in chainSequence:
continue
for offset in range(len(sequence.residues)-len(chainWithGaps[chain])+1):
if all(a == b or b == None for a,b in zip(sequence.residues[offset:], chainWithGaps[chain])):
chainSequence[chain] = sequence
chainOffset[chain] = offset
break
if chain in chainSequence:
break
# Now build the list of residues to add.
self.missingResidues = {}
for chain in self.topology.chains():
if chain in chainSequence:
offset = chainOffset[chain]
sequence = chainSequence[chain].residues
gappedSequence = chainWithGaps[chain]
index = 0
for i in range(len(sequence)):
if i < offset or i >= len(gappedSequence)+offset or gappedSequence[i-offset] is None:
key = (chain.index, index)
if key not in self.missingResidues:
self.missingResidues[key] = []
residueName = sequence[i]
if residueName in substitutions:
residueName = substitutions[sequence[i]]
self.missingResidues[key].append(residueName)
else:
index += 1
def findNonstandardResidues(self):
"""Identify non-standard residues found in the structure, and select standard residues to replace them with.
The results are stored into the nonstandardResidues field, which is a map of Residue objects to the names
of suggested replacement residues.
Examples
--------
Find nonstandard residues.
>>> fixer = PDBFixer(pdbid='1YRI')
>>> fixer.findNonstandardResidues()
>>> nonstandard_residues = fixer.nonstandardResidues
"""
# First find residues based on our table of standard substitutions.
nonstandard = dict((r, substitutions[r.name]) for r in self.topology.residues() if r.name in substitutions)
# Now add ones based on MODRES records.
modres = dict(((m.chainId, str(m.number), m.residueName), m.standardName) for m in self.modifiedResidues)
for chain in self.topology.chains():
for residue in chain.residues():
key = (chain.id, residue.id, residue.name)
if key in modres:
replacement = modres[key]
if replacement == 'DU':
replacement = 'DT'
if replacement in self.templates:
nonstandard[residue] = replacement
self.nonstandardResidues = [(r, nonstandard[r]) for r in sorted(nonstandard, key=lambda r: r.index)]
def replaceNonstandardResidues(self):
"""Replace every residue listed in the nonstandardResidues field with the specified standard residue.
Notes
-----
You must have first called findNonstandardResidues() to identify nonstandard residues.
Examples
--------
Find and replace nonstandard residues using replacement templates stored in the 'templates' field of PDBFixer object.
>>> fixer = PDBFixer(pdbid='1YRI')
>>> fixer.findNonstandardResidues()
>>> fixer.replaceNonstandardResidues()
"""
if len(self.nonstandardResidues) > 0:
deleteAtoms = []
# Find atoms that should be deleted.
for residue, replaceWith in self.nonstandardResidues:
residue.name = replaceWith
template = self.templates[replaceWith]
standardAtoms = set(atom.name for atom in template.topology.atoms())
for atom in residue.atoms():
if atom.element in (None, hydrogen) or atom.name not in standardAtoms:
deleteAtoms.append(atom)
# Delete them.
modeller = app.Modeller(self.topology, self.positions)
modeller.delete(deleteAtoms)
self.topology = modeller.topology
self.positions = modeller.positions
def applyMutations(self, mutations, chain_id):
"""Apply a list of amino acid substitutions to make a mutant protein.
Parameters
----------
mutations : list of strings
Each string must include the resName (original), index,
and resName (target). For example, ALA-133-GLY will mutate
alanine 133 to glycine.
chain_id : str
String based chain ID of the single chain you wish to mutate.
Notes
-----
We require three letter codes to avoid possible ambiguitities.
We can't guarantee that the resulting model is a good one; for
significant changes in sequence, you should probably be using
a standalone homology modelling tool.
Examples
--------
Find nonstandard residues.
>>> fixer = PDBFixer(pdbid='1VII')
>>> fixer.applyMutations(["ALA-57-GLY"], "A")
>>> fixer.findMissingResidues()
>>> fixer.findMissingAtoms()
>>> fixer.addMissingAtoms()
>>> fixer.addMissingHydrogens(7.0)
"""
# Retrieve all residues that match the specified chain_id.
# NOTE: Multiple chains may have the same chainid, but must have unique resSeq entries.
resSeq_to_residue = dict() # resSeq_to_residue[resid] is the residue in the requested chain corresponding to residue identifier 'resid'
for chain in self.topology.chains():
if chain.id == chain_id:
for residue in chain.residues():
resSeq_to_residue[int(residue.id)] = residue
# Make a map of residues to mutate based on requested mutation list.
residue_map = dict() # residue_map[residue] is the name of the new residue to mutate to, if a mutation is desired
for mut_str in mutations:
old_name, resSeq, new_name = mut_str.split("-")
resSeq = int(resSeq)
if resSeq not in resSeq_to_residue:
raise(KeyError("Cannot find chain %s residue %d in system!" % (chain_id, resSeq)))
residue = resSeq_to_residue[resSeq] # retrieve the requested residue
if residue.name != old_name:
raise(ValueError("You asked to mutate chain %s residue %d name %s, but that residue is actually %s!" % (chain_id, resSeq, old_name, residue.name)))
try:
template = self.templates[new_name]
except KeyError:
raise(KeyError("Cannot find residue %s in template library!" % new_name))
# Store mutation
residue_map[residue] = new_name
# If there are mutations to be made, make them.
if len(residue_map) > 0:
deleteAtoms = [] # list of atoms to delete
# Find atoms that should be deleted.
for residue in residue_map.keys():
replaceWith = residue_map[residue]
residue.name = replaceWith
template = self.templates[replaceWith]
standardAtoms = set(atom.name for atom in template.topology.atoms())
for atom in residue.atoms():
if atom.element in (None, hydrogen) or atom.name not in standardAtoms:
deleteAtoms.append(atom)
# Delete atoms queued to be deleted.
modeller = app.Modeller(self.topology, self.positions)
modeller.delete(deleteAtoms)
self.topology = modeller.topology
self.positions = modeller.positions
def findMissingAtoms(self):
"""Find heavy atoms that are missing from the structure.
The results are stored into two fields: missingAtoms and missingTerminals. Each of these is a dict whose keys
are Residue objects and whose values are lists of atom names. missingAtoms contains standard atoms that should
be present in any residue of that type. missingTerminals contains terminal atoms that should be present at the
start or end of a chain.
Notes
-----
You must have first called findMissingResidues().
Examples
--------
Find missing heavy atoms in Abl kinase structure.
>>> fixer = PDBFixer(pdbid='2F4J')
>>> fixer.findMissingResidues()
>>> fixer.findMissingAtoms()
>>> # Retrieve missing atoms.
>>> missingAtoms = fixer.missingAtoms
>>> # Retrieve missing terminal atoms.
>>> missingTerminals = fixer.missingTerminals
"""
missingAtoms = {}
missingTerminals = {}
# Loop over residues.
for chain in self.topology.chains():
chainResidues = list(chain.residues())
for residue in chain.residues():
if residue.name in self.templates:
template = self.templates[residue.name]
atomNames = set(atom.name for atom in residue.atoms())
templateAtoms = list(template.topology.atoms())
if residue == chainResidues[0] and (chain.index, 0) not in self.missingResidues:
templateAtoms = [atom for atom in templateAtoms if atom.name not in ('P', 'OP1', 'OP2')]
# Add atoms from the template that are missing.
missing = []
for atom in templateAtoms:
if atom.name not in atomNames:
missing.append(atom)
if len(missing) > 0:
missingAtoms[residue] = missing
# Add missing terminal atoms.
terminals = []
if residue == chainResidues[-1] and (chain.index, len(chainResidues)) not in self.missingResidues:
templateNames = set(atom.name for atom in template.topology.atoms())
if 'OXT' not in atomNames and all(name in templateNames for name in ['C', 'O', 'CA']):
terminals.append('OXT')
if len(terminals) > 0:
missingTerminals[residue] = terminals
self.missingAtoms = missingAtoms
self.missingTerminals = missingTerminals
def addMissingAtoms(self, seed=None):
"""Add all missing heavy atoms, as specified by the missingAtoms, missingTerminals, and missingResidues fields.
Parameters
----------
seed : int
Integer to set the random seed number of the integrator used in the minimization of the
coordinates of the newly-added atoms.
Notes
-----
You must already have called findMissingAtoms() to have identified atoms to be added.
Examples
--------
Find missing heavy atoms in Abl kinase structure.
>>> fixer = PDBFixer(pdbid='2F4J')
>>> fixer.findMissingResidues()
>>> fixer.findMissingAtoms()
>>> fixer.addMissingAtoms()
"""
# Create a Topology that 1) adds missing atoms, 2) removes all hydrogens, and 3) removes unknown molecules.
(newTopology, newPositions, newAtoms, existingAtomMap) = self._addAtomsToTopology(True, True)
if len(newAtoms) == 0:
# No atoms were added, but new bonds might have been created.
newBonds = set(newTopology.bonds())
for atom1, atom2 in self.topology.bonds():
if atom1 in existingAtomMap and atom2 in existingAtomMap:
a1 = existingAtomMap[atom1]
a2 = existingAtomMap[atom2]
if (a1, a2) in newBonds:
newBonds.remove((a1, a2))
elif (a2, a1) in newBonds:
newBonds.remove((a2, a1))
# Add the new bonds to the original Topology.
inverseAtomMap = dict((y,x) for (x,y) in existingAtomMap.items())
for atom1, atom2 in newBonds:
self.topology.addBond(inverseAtomMap[atom1], inverseAtomMap[atom2])
else:
# Create a System for energy minimizing it.
forcefield = self._createForceField(newTopology, False)
system = forcefield.createSystem(newTopology)
# Set any previously existing atoms to be massless, they so won't move.
for atom in existingAtomMap.values():
system.setParticleMass(atom.index, 0.0)
# If any heavy atoms were omitted, add them back to avoid steric clashes.
nonbonded = [f for f in system.getForces() if isinstance(f, mm.CustomNonbondedForce)][0]
for atom in self.topology.atoms():
if atom.element not in (None, hydrogen) and atom not in existingAtomMap:
system.addParticle(0.0)
nonbonded.addParticle([])
newPositions.append(self.positions[atom.index])
# For efficiency, only compute interactions that involve a new atom.
nonbonded.addInteractionGroup([atom.index for atom in newAtoms], range(system.getNumParticles()))
# Do an energy minimization.
integrator = mm.LangevinIntegrator(300*unit.kelvin, 10/unit.picosecond, 5*unit.femtosecond)
if seed is not None:
integrator.setRandomNumberSeed(seed)
context = mm.Context(system, integrator)
context.setPositions(newPositions)
mm.LocalEnergyMinimizer.minimize(context)
state = context.getState(getPositions=True)
if newTopology.getNumResidues() > 1:
# When looking for pairs of atoms that are too close to each other, exclude pairs that
# are in the same residue or are directly bonded to each other.
exclusions = dict((atom, {a.index for a in atom.residue.atoms()}) for atom in newAtoms)
for a1, a2 in newTopology.bonds():
if a1 in exclusions:
exclusions[a1].add(a2.index)
if a2 in exclusions:
exclusions[a2].add(a1.index)
cutoff = 0.13
nearest = self._findNearestDistance(context, newAtoms, cutoff, exclusions)
if nearest < cutoff:
# Some atoms are very close together. Run some dynamics while slowly increasing the strength of the
# repulsive interaction to try to improve the result.
for i in range(10):
context.setParameter('C', 0.15*(i+1))
integrator.step(200)
d = self._findNearestDistance(context, newAtoms, cutoff, exclusions)
if d > nearest:
nearest = d
state = context.getState(getPositions=True)
if nearest >= cutoff:
break
context.setState(state)
context.setParameter('C', 1.0)
mm.LocalEnergyMinimizer.minimize(context)
state = context.getState(getPositions=True)
# Now create a new Topology, including all atoms from the original one and adding the missing atoms.
(newTopology2, newPositions2, newAtoms2, existingAtomMap2) = self._addAtomsToTopology(False, False)
# Copy over the minimized positions for the new atoms.
for a1, a2 in zip(newAtoms, newAtoms2):
newPositions2[a2.index] = state.getPositions()[a1.index]
self.topology = newTopology2
self.positions = newPositions2
def removeHeterogens(self, keepWater=True):
"""Remove all heterogens from the structure.
Parameters
----------
keepWater : bool, optional, default=True
If True, water molecules will not be removed.
Examples
--------
Remove heterogens in Abl structure complexed with imatinib.
>>> fixer = PDBFixer(pdbid='2F4J')
>>> fixer.removeHeterogens(keepWater=False)
"""
keep = set(proteinResidues).union(dnaResidues).union(rnaResidues)
keep.add('N')
keep.add('UNK')
if keepWater:
keep.add('HOH')
toDelete = []
for residue in self.topology.residues():
if residue.name not in keep:
toDelete.append(residue)
modeller = app.Modeller(self.topology, self.positions)
modeller.delete(toDelete)
self.topology = modeller.topology
self.positions = modeller.positions
def addMissingHydrogens(self, pH=7.0, forcefield=None):
"""Add missing hydrogen atoms to the structure.
Parameters
----------
pH : float, optional, default=7.0
The pH based on which to select hydrogens.
forcefield : ForceField, optional, default=None
The forcefield used when adding and minimizing hydrogens. If None, a default forcefield is used.
Notes
-----
No extensive electrostatic analysis is performed; only default residue pKas are used.
Examples
--------
Examples
--------
Add missing hydrogens appropriate for pH 8.
>>> fixer = PDBFixer(pdbid='1VII')
>>> fixer.addMissingHydrogens(pH=8.0)
"""
modeller = app.Modeller(self.topology, self.positions)
modeller.addHydrogens(pH=pH, forcefield=forcefield)
self.topology = modeller.topology
self.positions = modeller.positions
def addSolvent(self, boxSize=None, padding=None, boxVectors=None, positiveIon='Na+', negativeIon='Cl-', ionicStrength=0*unit.molar, boxShape='cube'):
"""Add a solvent box surrounding the structure.
Parameters
----------
boxSize : openmm.Vec3, optional, default=None
The size of the box to fill with water. If specified, padding and boxVectors must not be specified.
padding : openmm.unit.Quantity compatible with nanometers, optional, default=None
Padding around macromolecule for filling box with water. If specified, boxSize and boxVectors must not be specified.
boxVectors : 3-tuple of openmm.Vec3, optional, default=None
Three vectors specifying the geometry of the box. If specified, padding and boxSize must not be specified.
positiveIon : str, optional, default='Na+'
The type of positive ion to add. Allowed values are 'Cs+', 'K+', 'Li+', 'Na+', and 'Rb+'.
negativeIon : str, optional, default='Cl-'
The type of negative ion to add. Allowed values are 'Cl-', 'Br-', 'F-', and 'I-'.
ionicStrength : openmm.unit.Quantity with units compatible with molar, optional, default=0*molar
The total concentration of ions (both positive and negative) to add. This does not include ions that are added to neutralize the system.
boxShape: str='cube'
the box shape to use. Allowed values are 'cube', 'dodecahedron', and 'octahedron'. If padding is None, this is ignored.
Examples
--------
Add missing residues, heavy atoms, and hydrogens, and then solvate with 10 A padding.
>>> fixer = PDBFixer(pdbid='1VII')
>>> fixer.findMissingResidues()
>>> fixer.findMissingAtoms()
>>> fixer.addMissingAtoms()
>>> fixer.addMissingHydrogens(pH=8.0)
>>> fixer.addSolvent(padding=10*unit.angstrom, ionicStrength=0.050*unit.molar)
"""
modeller = app.Modeller(self.topology, self.positions)
forcefield = self._createForceField(self.topology, True)
modeller.addSolvent(forcefield, padding=padding, boxSize=boxSize, boxVectors=boxVectors, boxShape=boxShape, positiveIon=positiveIon, negativeIon=negativeIon, ionicStrength=ionicStrength)
chains = list(modeller.topology.chains())
if len(chains) == 1:
chains[0].id = 'A'
else:
chains[-1].id = chr(ord(chains[-2].id)+1)
self.topology = modeller.topology
self.positions = modeller.positions
def addMembrane(self, lipidType='POPC', membraneCenterZ=0*unit.nanometer, minimumPadding=1*unit.nanometer, positiveIon='Na+', negativeIon='Cl-', ionicStrength=0*unit.molar):
"""Add a lipid membrane to the structure.
This method adds both lipids and water, so you should call either addSolvent() or addMembrane(),
but not both. See Modeller.addMembrane() for more details.
Parameters
----------
lipidType : string='POPC'
the type of lipid to use. Supported values are 'POPC', 'POPE', 'DLPC', 'DLPE', 'DMPC', 'DOPC', and 'DPPC'.
membraneCenterZ: distance=0*nanometer
the position along the Z axis of the center of the membrane
minimumPadding : distance=1*nanometer
the padding distance to use
positiveIon : str, optional, default='Na+'
The type of positive ion to add. Allowed values are 'Cs+', 'K+', 'Li+', 'Na+', and 'Rb+'.
negativeIon : str, optional, default='Cl-'
The type of negative ion to add. Allowed values are 'Cl-', 'Br-', 'F-', and 'I-'.
ionicStrength : openmm.unit.Quantity with units compatible with molar, optional, default=0*molar
The total concentration of ions (both positive and negative) to add. This does not include ions that are added to neutralize the system.
"""
modeller = app.Modeller(self.topology, self.positions)
forcefield = self._createForceField(self.topology, True)
modeller.addMembrane(forcefield, lipidType=lipidType, minimumPadding=minimumPadding, positiveIon=positiveIon, negativeIon=negativeIon, ionicStrength=ionicStrength)
chains = list(modeller.topology.chains())
if len(chains) == 1:
chains[0].id = 'A'
else:
chains[-1].id = chr(ord(chains[-2].id)+1)
self.topology = modeller.topology
self.positions = modeller.positions
def _createForceField(self, newTopology, water):
"""Create a force field to use for optimizing the positions of newly added atoms."""
if water:
forcefield = app.ForceField('amber14-all.xml', 'amber14/tip3p.xml')
nonbonded = [f for f in forcefield._forces if isinstance(f, NonbondedGenerator)][0]
radii = {'H':0.198, 'Li':0.203, 'C':0.340, 'N':0.325, 'O':0.299, 'F':0.312, 'Na':0.333, 'Mg':0.141,
'P':0.374, 'S':0.356, 'Cl':0.347, 'K':0.474, 'Br':0.396, 'Rb':0.527, 'I':0.419, 'Cs':0.605}
else:
forcefield = app.ForceField(os.path.join(os.path.dirname(__file__), 'soft.xml'))
# The Topology may contain residues for which the ForceField does not have a template.
# If so, we need to create new templates for them.
atomTypes = {}
bondedToAtom = []
for atom in newTopology.atoms():
bondedToAtom.append(set())
for atom1, atom2 in newTopology.bonds():
bondedToAtom[atom1.index].add(atom2.index)
bondedToAtom[atom2.index].add(atom1.index)
for residue in newTopology.residues():
# Make sure the ForceField has a template for this residue.
signature = app.forcefield._createResidueSignature([atom.element for atom in residue.atoms()])
if signature in forcefield._templateSignatures:
if any(matchResidue(residue, t, bondedToAtom) is not None for t in forcefield._templateSignatures[signature]):
continue
# Create a new template.
resName = "extra_"+residue.name
template = app.ForceField._TemplateData(resName)
forcefield._templates[resName] = template
indexInResidue = {}
for atom in residue.atoms():
element = atom.element
typeName = 'extra_'+element.symbol
if element not in atomTypes:
atomTypes[element] = app.ForceField._AtomType(typeName, '', 0.0, element)
forcefield._atomTypes[typeName] = atomTypes[element]
if water:
# Select a reasonable vdW radius for this atom type.
if element.symbol in radii:
sigma = radii[element.symbol]
else:
sigma = 0.5
nonbonded.registerAtom({'type':typeName, 'charge':'0', 'sigma':str(sigma), 'epsilon':'0'})
indexInResidue[atom.index] = len(template.atoms)
template.atoms.append(app.ForceField._TemplateAtomData(atom.name, typeName, element))
for atom in residue.atoms():
for bondedTo in bondedToAtom[atom.index]:
if bondedTo in indexInResidue:
b = (indexInResidue[atom.index], indexInResidue[bondedTo])
if b[0] < b[1]:
template.bonds.append(b)
template.atoms[b[0]].bondedTo.append(b[1])
template.atoms[b[1]].bondedTo.append(b[0])
else:
b = indexInResidue[atom.index]
template.externalBonds.append(b)
template.atoms[b].externalBonds += 1
if signature in forcefield._templateSignatures:
forcefield._templateSignatures[signature].append(template)
else:
forcefield._templateSignatures[signature] = [template]
return forcefield
def _findNearestDistance(self, context, newAtoms, cutoff, exclusions):
"""Given a set of newly added atoms, find the closest distance between one of those atoms and another atom."""
positions = context.getState(getPositions=True).getPositions(asNumpy=True).value_in_unit(unit.nanometer)
boxSize = np.max(positions, axis=0)-np.min(positions, axis=0)
boxVectors = [(boxSize[0], 0, 0), (0, boxSize[1], 0), (0, 0, boxSize[2])]
cells = app.modeller._CellList(positions, cutoff, boxVectors, False)
nearest_squared = sys.float_info.max
for atom in newAtoms:
excluded = exclusions[atom]
for i in cells.neighbors(positions[atom.index]):
if i not in excluded:
p = positions[atom.index]-positions[i]
dist_squared = np.dot(p, p)
if dist_squared < nearest_squared:
nearest_squared = dist_squared
return np.sqrt(nearest_squared)
def main():
if len(sys.argv) < 2:
# Display the UI.
from . import ui
ui.launchUI()
else:
# Run in command line mode.
from optparse import OptionParser
parser = OptionParser(usage="Usage: %prog\n %prog filename [options] \n\nWhen run with no arguments, it launches the user interface. If any arguments are specified, it runs in command line mode.")
parser.add_option('--pdbid', default=None, dest='pdbid', metavar='PDBID', help='PDB id to retrieve from RCSB [default: None]')
parser.add_option('--url', default=None, dest='url', metavar='URL', help='URL to retrieve PDB from [default: None]')
parser.add_option('--output', default='output.pdb', dest='output', metavar='FILENAME', help='output pdb file [default: output.pdb]')
parser.add_option('--add-atoms', default='all', dest='atoms', choices=('all', 'heavy', 'hydrogen', 'none'), help='which missing atoms to add: all, heavy, hydrogen, or none [default: all]')
parser.add_option('--keep-heterogens', default='all', dest='heterogens', choices=('all', 'water', 'none'), metavar='OPTION', help='which heterogens to keep: all, water, or none [default: all]')
parser.add_option('--replace-nonstandard', action='store_true', default=False, dest='nonstandard', help='replace nonstandard residues with standard equivalents')
parser.add_option('--add-residues', action='store_true', default=False, dest='residues', help='add missing residues')
parser.add_option('--water-box', dest='box', type='float', nargs=3, metavar='X Y Z', help='add a water box. The value is the box dimensions in nm [example: --water-box=2.5 2.4 3.0]')
parser.add_option('--ph', type='float', default=7.0, dest='ph', help='the pH to use for adding missing hydrogens [default: 7.0]')
parser.add_option('--positive-ion', default='Na+', dest='positiveIon', choices=('Cs+', 'K+', 'Li+', 'Na+', 'Rb+'), metavar='ION', help='positive ion to include in the water box: Cs+, K+, Li+, Na+, or Rb+ [default: Na+]')
parser.add_option('--negative-ion', default='Cl-', dest='negativeIon', choices=('Cl-', 'Br-', 'F-', 'I-'), metavar='ION', help='negative ion to include in the water box: Cl-, Br-, F-, or I- [default: Cl-]')
parser.add_option('--ionic-strength', type='float', default=0.0, dest='ionic', metavar='STRENGTH', help='molar concentration of ions to add to the water box [default: 0.0]')
parser.add_option('--verbose', default=False, action='store_true', dest='verbose', metavar='VERBOSE', help='Print verbose output')
(options, args) = parser.parse_args()
if (len(args) == 0) and (options.pdbid==None) and (options.url==None):
parser.error('No filename specified')
if len(args) > 1:
parser.error('Must specify a single filename or --pdbid or --url')
if options.pdbid != None:
if options.verbose: print('Retrieving PDB "' + options.pdbid + '" from RCSB...')
fixer = PDBFixer(pdbid=options.pdbid)
elif options.url != None:
if options.verbose: print('Retrieving PDB from URL "' + options.url + '"...')
fixer = PDBFixer(url=options.url)
else:
fixer = PDBFixer(filename=sys.argv[1])
if options.residues:
if options.verbose: print('Finding missing residues...')
fixer.findMissingResidues()
else:
fixer.missingResidues = {}
if options.nonstandard:
if options.verbose: print('Finding nonstandard residues...')
fixer.findNonstandardResidues()
if options.verbose: print('Replacing nonstandard residues...')
fixer.replaceNonstandardResidues()
if options.heterogens == 'none':
fixer.removeHeterogens(False)
elif options.heterogens == 'water':
fixer.removeHeterogens(True)
if options.verbose: print('Finding missing atoms...')
fixer.findMissingAtoms()
if options.atoms not in ('all', 'heavy'):
fixer.missingAtoms = {}
fixer.missingTerminals = {}
if options.verbose: print('Adding missing atoms...')
fixer.addMissingAtoms()
if options.atoms in ('all', 'hydrogen'):
if options.verbose: print('Adding missing hydrogens...')
fixer.addMissingHydrogens(options.ph)
if options.box is not None:
if options.verbose: print('Adding solvent...')
fixer.addSolvent(boxSize=options.box*unit.nanometer, positiveIon=options.positiveIon,
negativeIon=options.negativeIon, ionicStrength=options.ionic*unit.molar)
with open(options.output, 'w') as f:
if options.verbose: print('Writing output...')
if fixer.source is not None:
f.write("REMARK 1 PDBFIXER FROM: %s\n" % fixer.source)
app.PDBFile.writeFile(fixer.topology, fixer.positions, f, True)
if options.verbose: print('Done.')
if __name__ == '__main__':
main()
|