import os os.system("pip install pymongo") from collections import defaultdict from database import save_response import gradio as gr import pandas as pd import random css = """ .rtl{ text-align: right; } .selectize-dropdown, .selectize-input { direction: rtl !important; } """ file_path = 'instructions/merged.json' df = pd.read_json(file_path, orient='records', lines=False) # that keeps track of how many times each question has been used question_count = {index: 0 for index in df.index} model_rankings = defaultdict(lambda: {'1st': 0, '2nd': 0, '3rd': 0}) def get_rank_suffix(rank): if 11 <= rank <= 13: return 'th' else: suffixes = {1: 'st', 2: 'nd', 3: 'rd'} return suffixes.get(rank % 10, 'th') def process_rankings(user_rankings): print("Processing Rankings:", user_rankings) # Debugging print for answer_id, rank in user_rankings: model = answer_id.split('_')[0] # Extracting the model name from the answer_id rank_suffix = get_rank_suffix(rank) model_rankings[model][f'{rank}{rank_suffix}'] += 1 # Using the correct suffix based on the rank model_rankings_dict = dict(model_rankings) save_response(model_rankings_dict) print("Updated Model Rankings:", model_rankings) # Debugging print return def get_questions_and_answers(): available_questions = [index for index, count in question_count.items() if count < 3] selected_indexes = random.sample(available_questions, min(4, len(available_questions))) for index in selected_indexes: question_count[index] += 1 questions_and_answers = [] for index in selected_indexes: question = df.loc[index, 'instruction'] answers_with_models = [ (df.loc[index, 'cidar_output'], 'CIDAR'), (df.loc[index, 'chat_output'], 'CHAT'), (df.loc[index, 'alpagasus_output'], 'ALPAGASUS') ] random.shuffle(answers_with_models) # Shuffle answers with their IDs questions_and_answers.append((question, answers_with_models)) return questions_and_answers def rank_interface(): questions = get_questions_and_answers() # Create three dropdowns for each question for 1st, 2nd, and 3rd choices inputs = [] for question, answers in questions: # Use an HTML component to display the question inputs.append(gr.Markdown(rtl=True, value= question)) answers_text = [answer for answer, _ in answers] # Append three dropdowns for rankings without repeating the question inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الأول")) inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الثاني")) inputs.append(gr.Dropdown(elem_classes="rtl", choices=["...اختر"] + answers_text, label="الاختيار الثالث")) outputs = gr.Textbox(elem_id="rtl_text") def rank_fluency(*dropdown_selections): user_rankings = [] for i in range(0, len(dropdown_selections), 4): # Process each set of 3 dropdowns for a question selections = dropdown_selections[i+1:i+4] # Check for duplicate selections within the same question unique_selections = set(tuple(selection) for selection in selections) # Now you can safely check if all sublists were unique if len(selections) != len(unique_selections): return "تأكد من عدم تكرار الإجابة لنفس السؤال" question_index = i // 4 _, model_answers = questions[question_index] for j, chosen_answer in enumerate(selections, start=1): if chosen_answer == "...اختر": # Skip unselected dropdowns continue for model_answer, model in model_answers: if model_answer == chosen_answer: user_rankings.append((model, j)) # j is the rank (1, 2, or 3) break process_rankings(user_rankings) return "سجلنا ردك، ما قصرت =)" return gr.Interface(fn=rank_fluency, inputs=inputs, outputs=outputs, title="ترتيب فصاحة النماذج", description=".لديك مجموعة من الأسئلة، الرجاء ترتيب إجابات كل سؤال حسب جودة و فصاحة الإجابة", css=css) iface = rank_interface() iface.launch()