import os from threading import Thread from typing import Iterator import os from huggingface_hub import login,whoami import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import argparse MAX_MAX_NEW_TOKENS = 128 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) model = None tokenizer = None my_token = os.getenv("HF_AUTH_TOKEN") try: username = whoami() except OSError: login(token = my_token, add_to_git_credential = True) model_id = "stabilityai/ar-stablelm-2-chat" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model.generation_config.pad_token_id = model.generation_config.eos_token_id def generate( message: str, chat_history: list[dict], system_prompt: str = "", max_new_tokens: int = 128, temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) conversation += chat_history conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, eos_token_id=tokenizer.eos_token_id, # Stop generation at temperature=temperature, top_p=top_p, top_k=top_k ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.7, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["السلام عليكم"], ["اعرب الجملة التالية: ذهبت الى السوق"], ["اضف تشكيل للجملة التالية: ضرب زيدا عمر"], ["كم عدد بحور الشعر العربي؟"] ], cache_examples=False, type="messages", ) with gr.Blocks(css_paths="style.css", fill_height=True) as demo: # def authenticate_token(token): # try: # login(token) # return "Authenticated successfully" # except: # return "Invalid token. Please try again." # # Components # token_input = gr.Textbox(label="Hugging Face Access Token", type="password", placeholder="Enter your token here...") # auth_button = gr.Button("Authenticate") # output = gr.Textbox(label="Output") # auth_button.click(fn=authenticate_token, inputs=token_input, outputs=output) chat_interface.render() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Gradio App with Sharing") parser.add_argument("--share", action="store_true", help="Enable public sharing") args = parser.parse_args() demo.queue(max_size=20).launch(share = args.share)