import pandas as pd import plotly.express as px import plotly.graph_objects as go import streamlit as st import tweepy from plotly.subplots import make_subplots from transformers import pipeline # Twitter API keys (should be stored securely, e.g., in environment variables) consumer_key = "your_consumer_key" consumer_secret = "your_consumer_secret" access_key = "your_access_key" access_secret = "your_access_secret" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_key, access_secret) api = tweepy.API(auth) def get_tweets(username, count): tweets = tweepy.Cursor(api.user_timeline, screen_name=username, tweet_mode="extended", exclude_replies=True, include_rts=False).items(count) tweets = list(tweets) response = { "tweets": [tweet.full_text.replace("\n", "").lower() for tweet in tweets], "timestamps": [str(tweet.created_at) for tweet in tweets], "retweets": [tweet.retweet_count for tweet in tweets], "likes": [tweet.favorite_count for tweet in tweets], } return response def get_sentiment(texts): preds = pipe(texts) response = { "labels": [pred["label"] for pred in preds], "scores": [pred["score"] for pred in preds], } return response def get_aggregation_period(df): t_min, t_max = df["timestamps"].min(), df["timestamps"].max() t_delta = t_max - t_min if t_delta < pd.to_timedelta("30D"): return "1D" elif t_delta < pd.to_timedelta("365D"): return "7D" else: return "30D" @st.cache_data def load_model(): pipe = pipeline(task="sentiment-analysis", model="bhadresh-savani/distilbert-base-uncased-emotion") return pipe # Streamlit app st.title("Twitter Emotion Analyser") pipe = load_model() twitter_handle = st.sidebar.text_input("Twitter handle:", "elonmusk") twitter_count = st.sidebar.selectbox("Number of tweets:", (10, 30, 50, 100)) if st.sidebar.button("Get tweets!"): tweets = get_tweets(twitter_handle, twitter_count) preds = get_sentiment(tweets["tweets"]) tweets.update(preds) df = pd.DataFrame(tweets) df["timestamps"] = pd.to_datetime(df["timestamps"]) agg_period = get_aggregation_period(df) ts_sentiment = df.groupby(["timestamps", "labels"]).count()["likes"].unstack().resample(agg_period).count().stack().reset_index() ts_sentiment.columns = ["timestamp", "label", "count"] fig = make_subplots(rows=1, cols=2, horizontal_spacing=0.15) for label in ts_sentiment["label"].unique(): fig.add_trace(go.Scatter(x=ts_sentiment.query("label == @label")["timestamp"], y=ts_sentiment.query("label == @label")["count"], mode="lines", name=label, stackgroup="one", hoverinfo="x+y"), row=1, col=1) likes_per_label = df.groupby("labels")["likes"].mean().reset_index() fig.add_trace(go.Bar(x=likes_per_label["labels"], y=likes_per_label["likes"], showlegend=False, marker_color=px.colors.qualitative.Plotly, opacity=0.6), row=1, col=2) fig.update_yaxes(title_text="Number of Tweets", row=1, col=1) fig.update_yaxes(title_text="Number of Likes", row=1, col=2) fig.update_layout(height=350, width=750) st.plotly_chart(fig) st.markdown(df.to_markdown())