This example demonstrates how to vectorize a PDF of the [Attention Is All You Need](https://arxiv.org/pdf/1706.03762.pdf) paper and setup a Swarms agent with rules and the `KnowledgeBase` tool to use it during conversations. ```python import io import requests from swarms.engines import VectorQueryEngine from swarms.loaders import PdfLoader from swarms.structures import Agent from swarms.tools import KnowledgeBaseClient from swarms.utils import Chat namespace = "attention" response = requests.get("https://arxiv.org/pdf/1706.03762.pdf") engine = VectorQueryEngine() engine.vector_store_driver.upsert_text_artifacts( { namespace: PdfLoader().load( io.BytesIO(response.content) ) } ) kb_client = KnowledgeBaseClient( description="Contains information about the Attention Is All You Need paper. " "Use it to answer any related questions.", query_engine=engine, namespace=namespace ) agent = Agent( tools=[kb_client] ) Chat(agent).start() ```