""" Partially ported from https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py """ from typing import Dict, Union import imageio import torch import json import numpy as np import torch.nn.functional as F from omegaconf import ListConfig, OmegaConf from tqdm import tqdm from ...modules.diffusionmodules.sampling_utils import ( get_ancestral_step, linear_multistep_coeff, to_d, to_neg_log_sigma, to_sigma, ) from ...util import append_dims, default, instantiate_from_config from torchvision.utils import save_image DEFAULT_GUIDER = {"target": "sgm.modules.diffusionmodules.guiders.IdentityGuider"} class BaseDiffusionSampler: def __init__( self, discretization_config: Union[Dict, ListConfig, OmegaConf], num_steps: Union[int, None] = None, guider_config: Union[Dict, ListConfig, OmegaConf, None] = None, verbose: bool = False, device: str = "cuda", ): self.num_steps = num_steps self.discretization = instantiate_from_config(discretization_config) self.guider = instantiate_from_config( default( guider_config, DEFAULT_GUIDER, ) ) self.verbose = verbose self.device = device def prepare_sampling_loop(self, x, cond, uc=None, num_steps=None): sigmas = self.discretization( self.num_steps if num_steps is None else num_steps, device=self.device ) uc = default(uc, cond) x *= torch.sqrt(1.0 + sigmas[0] ** 2.0) num_sigmas = len(sigmas) s_in = x.new_ones([x.shape[0]]) return x, s_in, sigmas, num_sigmas, cond, uc def denoise(self, x, model, sigma, cond, uc): denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc)) denoised = self.guider(denoised, sigma) return denoised def get_sigma_gen(self, num_sigmas, init_step=0): sigma_generator = range(init_step, num_sigmas - 1) if self.verbose: print("#" * 30, " Sampling setting ", "#" * 30) print(f"Sampler: {self.__class__.__name__}") print(f"Discretization: {self.discretization.__class__.__name__}") print(f"Guider: {self.guider.__class__.__name__}") sigma_generator = tqdm( sigma_generator, total=num_sigmas-1-init_step, desc=f"Sampling with {self.__class__.__name__} for {num_sigmas-1-init_step} steps", ) return sigma_generator class SingleStepDiffusionSampler(BaseDiffusionSampler): def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc, *args, **kwargs): raise NotImplementedError def euler_step(self, x, d, dt): return x + dt * d class EDMSampler(SingleStepDiffusionSampler): def __init__( self, s_churn=0.0, s_tmin=0.0, s_tmax=float("inf"), s_noise=1.0, *args, **kwargs ): super().__init__(*args, **kwargs) self.s_churn = s_churn self.s_tmin = s_tmin self.s_tmax = s_tmax self.s_noise = s_noise def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, gamma=0.0): sigma_hat = sigma * (gamma + 1.0) if gamma > 0: eps = torch.randn_like(x) * self.s_noise x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5 denoised = self.denoise(x, denoiser, sigma_hat, cond, uc) d = to_d(x, sigma_hat, denoised) dt = append_dims(next_sigma - sigma_hat, x.ndim) euler_step = self.euler_step(x, d, dt) x = self.possible_correction_step( euler_step, x, d, dt, next_sigma, denoiser, cond, uc ) return x def __call__(self, denoiser, x, cond, uc=None, num_steps=None): x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( x, cond, uc, num_steps ) for i in self.get_sigma_gen(num_sigmas): gamma = ( min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0 ) x = self.sampler_step( s_in * sigmas[i], s_in * sigmas[i + 1], denoiser, x, cond, uc, gamma, ) return x class AncestralSampler(SingleStepDiffusionSampler): def __init__(self, eta=1.0, s_noise=1.0, *args, **kwargs): super().__init__(*args, **kwargs) self.eta = eta self.s_noise = s_noise self.noise_sampler = lambda x: torch.randn_like(x) def ancestral_euler_step(self, x, denoised, sigma, sigma_down): d = to_d(x, sigma, denoised) dt = append_dims(sigma_down - sigma, x.ndim) return self.euler_step(x, d, dt) def ancestral_step(self, x, sigma, next_sigma, sigma_up): x = torch.where( append_dims(next_sigma, x.ndim) > 0.0, x + self.noise_sampler(x) * self.s_noise * append_dims(sigma_up, x.ndim), x, ) return x def __call__(self, denoiser, x, cond, uc=None, num_steps=None): x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( x, cond, uc, num_steps ) for i in self.get_sigma_gen(num_sigmas): x = self.sampler_step( s_in * sigmas[i], s_in * sigmas[i + 1], denoiser, x, cond, uc, ) return x class LinearMultistepSampler(BaseDiffusionSampler): def __init__( self, order=4, *args, **kwargs, ): super().__init__(*args, **kwargs) self.order = order def __call__(self, denoiser, x, cond, uc=None, num_steps=None, **kwargs): x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( x, cond, uc, num_steps ) ds = [] sigmas_cpu = sigmas.detach().cpu().numpy() for i in self.get_sigma_gen(num_sigmas): sigma = s_in * sigmas[i] denoised = denoiser( *self.guider.prepare_inputs(x, sigma, cond, uc), **kwargs ) denoised = self.guider(denoised, sigma) d = to_d(x, sigma, denoised) ds.append(d) if len(ds) > self.order: ds.pop(0) cur_order = min(i + 1, self.order) coeffs = [ linear_multistep_coeff(cur_order, sigmas_cpu, i, j) for j in range(cur_order) ] x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds))) return x class EulerEDMSampler(EDMSampler): def possible_correction_step( self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc ): return euler_step def get_c_noise(self, x, model, sigma): sigma = model.denoiser.possibly_quantize_sigma(sigma) sigma_shape = sigma.shape sigma = append_dims(sigma, x.ndim) c_skip, c_out, c_in, c_noise = model.denoiser.scaling(sigma) c_noise = model.denoiser.possibly_quantize_c_noise(c_noise.reshape(sigma_shape)) return c_noise def attend_and_excite(self, x, model, sigma, cond, batch, alpha, iter_enabled, thres, max_iter=20): # calc timestep c_noise = self.get_c_noise(x, model, sigma) x = x.clone().detach().requires_grad_(True) # https://github.com/yuval-alaluf/Attend-and-Excite/blob/main/pipeline_attend_and_excite.py#L288 iters = 0 while True: model_output = model.model(x, c_noise, cond) local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"]) grad = torch.autograd.grad(local_loss.requires_grad_(True), [x], retain_graph=True)[0] x = x - alpha * grad iters += 1 if not iter_enabled or local_loss <= thres or iters > max_iter: break return x def create_pascal_label_colormap(self): """ PASCAL VOC 分割数据集的类别标签颜色映射label colormap 返回: 可视化分割结果的颜色映射Colormap """ colormap = np.zeros((256, 3), dtype=int) ind = np.arange(256, dtype=int) for shift in reversed(range(8)): for channel in range(3): colormap[:, channel] |= ((ind >> channel) & 1) << shift ind >>= 3 return colormap def save_segment_map(self, image, attn_maps, tokens=None, save_name=None): colormap = self.create_pascal_label_colormap() H, W = image.shape[-2:] image_ = image*0.3 sections = [] for i in range(len(tokens)): attn_map = attn_maps[i] attn_map_t = np.tile(attn_map[None], (1,3,1,1)) # b, 3, h, w attn_map_t = torch.from_numpy(attn_map_t) attn_map_t = F.interpolate(attn_map_t, (W, H)) color = torch.from_numpy(colormap[i+1][None,:,None,None] / 255.0) colored_attn_map = attn_map_t * color colored_attn_map = colored_attn_map.to(device=image_.device) image_ += colored_attn_map*0.7 sections.append(attn_map) section = np.stack(sections) np.save(f"temp/seg_map/seg_{save_name}.npy", section) save_image(image_, f"temp/seg_map/seg_{save_name}.png", normalize=True) def get_init_noise(self, cfgs, model, cond, batch, uc=None): H, W = batch["target_size_as_tuple"][0] shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor) randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu)) x = randn.clone() xs = [] self.verbose = False for _ in range(cfgs.noise_iters): x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( x, cond, uc, num_steps=2 ) superv = { "mask": batch["mask"] if "mask" in batch else None, "seg_mask": batch["seg_mask"] if "seg_mask" in batch else None } local_losses = [] for i in self.get_sigma_gen(num_sigmas): gamma = ( min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0 ) x, inter, local_loss = self.sampler_step( s_in * sigmas[i], s_in * sigmas[i + 1], model, x, cond, superv, uc, gamma, save_loss=True ) local_losses.append(local_loss.item()) xs.append((randn, local_losses[-1])) randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu)) x = randn.clone() self.verbose = True xs.sort(key = lambda x: x[-1]) if len(xs) > 0: print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}") x = xs[0][0] return x def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc=None, gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False, name=None, save_loss=False, save_attn=False, save_inter=False): sigma_hat = sigma * (gamma + 1.0) if gamma > 0: eps = torch.randn_like(x) * self.s_noise x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5 if update: x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres) denoised = self.denoise(x, model, sigma_hat, cond, uc) denoised_decode = model.decode_first_stage(denoised) if save_inter else None if save_loss: local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"]) local_loss = local_loss[local_loss.shape[0]//2:] else: local_loss = torch.zeros(1) if save_attn: attn_map = model.model.diffusion_model.save_attn_map(save_name=name, tokens=batch["label"][0]) denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name) d = to_d(x, sigma_hat, denoised) dt = append_dims(next_sigma - sigma_hat, x.ndim) euler_step = self.euler_step(x, d, dt) return euler_step, denoised_decode, local_loss def __call__(self, model, x, cond, batch=None, uc=None, num_steps=None, init_step=0, name=None, aae_enabled=False, detailed=False): x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( x, cond, uc, num_steps ) name = batch["name"][0] inters = [] local_losses = [] scales = np.linspace(start=1.0, stop=0, num=num_sigmas) iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32) thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6) for i in self.get_sigma_gen(num_sigmas, init_step=init_step): gamma = ( min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0 ) alpha = 20 * np.sqrt(scales[i]) update = aae_enabled save_loss = detailed save_attn = detailed and (i == (num_sigmas-1)//2) save_inter = aae_enabled if i in iter_lst: iter_enabled = True thres = thres_lst[list(iter_lst).index(i)] else: iter_enabled = False thres = 0.0 x, inter, local_loss = self.sampler_step( s_in * sigmas[i], s_in * sigmas[i + 1], model, x, cond, batch, uc, gamma, alpha=alpha, iter_enabled=iter_enabled, thres=thres, update=update, name=name, save_loss=save_loss, save_attn=save_attn, save_inter=save_inter ) local_losses.append(local_loss.item()) if inter is not None: inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0] inter = inter.cpu().numpy().transpose(1, 2, 0) * 255 inters.append(inter.astype(np.uint8)) print(f"Local losses: {local_losses}") if len(inters) > 0: imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.02) return x class EulerEDMDualSampler(EulerEDMSampler): def prepare_sampling_loop(self, x, cond, uc_1=None, uc_2=None, num_steps=None): sigmas = self.discretization( self.num_steps if num_steps is None else num_steps, device=self.device ) uc_1 = default(uc_1, cond) uc_2 = default(uc_2, cond) x *= torch.sqrt(1.0 + sigmas[0] ** 2.0) num_sigmas = len(sigmas) s_in = x.new_ones([x.shape[0]]) return x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 def denoise(self, x, model, sigma, cond, uc_1, uc_2): denoised = model.denoiser(model.model, *self.guider.prepare_inputs(x, sigma, cond, uc_1, uc_2)) denoised = self.guider(denoised, sigma) return denoised def get_init_noise(self, cfgs, model, cond, batch, uc_1=None, uc_2=None): H, W = batch["target_size_as_tuple"][0] shape = (cfgs.batch_size, cfgs.channel, int(H) // cfgs.factor, int(W) // cfgs.factor) randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu)) x = randn.clone() xs = [] self.verbose = False for _ in range(cfgs.noise_iters): x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop( x, cond, uc_1, uc_2, num_steps=2 ) superv = { "mask": batch["mask"] if "mask" in batch else None, "seg_mask": batch["seg_mask"] if "seg_mask" in batch else None } local_losses = [] for i in self.get_sigma_gen(num_sigmas): gamma = ( min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0 ) x, inter, local_loss = self.sampler_step( s_in * sigmas[i], s_in * sigmas[i + 1], model, x, cond, superv, uc_1, uc_2, gamma, save_loss=True ) local_losses.append(local_loss.item()) xs.append((randn, local_losses[-1])) randn = torch.randn(shape).to(torch.device("cuda", index=cfgs.gpu)) x = randn.clone() self.verbose = True xs.sort(key = lambda x: x[-1]) if len(xs) > 0: print(f"Init local loss: Best {xs[0][1]} Worst {xs[-1][1]}") x = xs[0][0] return x def sampler_step(self, sigma, next_sigma, model, x, cond, batch=None, uc_1=None, uc_2=None, gamma=0.0, alpha=0, iter_enabled=False, thres=None, update=False, name=None, save_loss=False, save_attn=False, save_inter=False): sigma_hat = sigma * (gamma + 1.0) if gamma > 0: eps = torch.randn_like(x) * self.s_noise x = x + eps * append_dims(sigma_hat**2 - sigma**2, x.ndim) ** 0.5 if update: x = self.attend_and_excite(x, model, sigma_hat, cond, batch, alpha, iter_enabled, thres) denoised = self.denoise(x, model, sigma_hat, cond, uc_1, uc_2) denoised_decode = model.decode_first_stage(denoised) if save_inter else None if save_loss: local_loss = model.loss_fn.get_min_local_loss(model.model.diffusion_model.attn_map_cache, batch["mask"], batch["seg_mask"]) local_loss = local_loss[-local_loss.shape[0]//3:] else: local_loss = torch.zeros(1) if save_attn: attn_map = model.model.diffusion_model.save_attn_map(save_name=name, save_single=True) denoised_decode = model.decode_first_stage(denoised) if denoised_decode is None else denoised_decode self.save_segment_map(denoised_decode, attn_map, tokens=batch["label"][0], save_name=name) d = to_d(x, sigma_hat, denoised) dt = append_dims(next_sigma - sigma_hat, x.ndim) euler_step = self.euler_step(x, d, dt) return euler_step, denoised_decode, local_loss def __call__(self, model, x, cond, batch=None, uc_1=None, uc_2=None, num_steps=None, init_step=0, name=None, aae_enabled=False, detailed=False): x, s_in, sigmas, num_sigmas, cond, uc_1, uc_2 = self.prepare_sampling_loop( x, cond, uc_1, uc_2, num_steps ) name = batch["name"][0] inters = [] local_losses = [] scales = np.linspace(start=1.0, stop=0, num=num_sigmas) iter_lst = np.linspace(start=5, stop=25, num=6, dtype=np.int32) thres_lst = np.linspace(start=-0.5, stop=-0.8, num=6) for i in self.get_sigma_gen(num_sigmas, init_step=init_step): gamma = ( min(self.s_churn / (num_sigmas - 1), 2**0.5 - 1) if self.s_tmin <= sigmas[i] <= self.s_tmax else 0.0 ) alpha = 20 * np.sqrt(scales[i]) update = aae_enabled save_loss = aae_enabled save_attn = detailed and (i == (num_sigmas-1)//2) save_inter = aae_enabled if i in iter_lst: iter_enabled = True thres = thres_lst[list(iter_lst).index(i)] else: iter_enabled = False thres = 0.0 x, inter, local_loss = self.sampler_step( s_in * sigmas[i], s_in * sigmas[i + 1], model, x, cond, batch, uc_1, uc_2, gamma, alpha=alpha, iter_enabled=iter_enabled, thres=thres, update=update, name=name, save_loss=save_loss, save_attn=save_attn, save_inter=save_inter ) local_losses.append(local_loss.item()) if inter is not None: inter = torch.clamp((inter + 1.0) / 2.0, min=0.0, max=1.0)[0] inter = inter.cpu().numpy().transpose(1, 2, 0) * 255 inters.append(inter.astype(np.uint8)) print(f"Local losses: {local_losses}") if len(inters) > 0: imageio.mimsave(f"./temp/inters/{name}.gif", inters, 'GIF', duration=0.1) return x class HeunEDMSampler(EDMSampler): def possible_correction_step( self, euler_step, x, d, dt, next_sigma, denoiser, cond, uc ): if torch.sum(next_sigma) < 1e-14: # Save a network evaluation if all noise levels are 0 return euler_step else: denoised = self.denoise(euler_step, denoiser, next_sigma, cond, uc) d_new = to_d(euler_step, next_sigma, denoised) d_prime = (d + d_new) / 2.0 # apply correction if noise level is not 0 x = torch.where( append_dims(next_sigma, x.ndim) > 0.0, x + d_prime * dt, euler_step ) return x class EulerAncestralSampler(AncestralSampler): def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc): sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta) denoised = self.denoise(x, denoiser, sigma, cond, uc) x = self.ancestral_euler_step(x, denoised, sigma, sigma_down) x = self.ancestral_step(x, sigma, next_sigma, sigma_up) return x class DPMPP2SAncestralSampler(AncestralSampler): def get_variables(self, sigma, sigma_down): t, t_next = [to_neg_log_sigma(s) for s in (sigma, sigma_down)] h = t_next - t s = t + 0.5 * h return h, s, t, t_next def get_mult(self, h, s, t, t_next): mult1 = to_sigma(s) / to_sigma(t) mult2 = (-0.5 * h).expm1() mult3 = to_sigma(t_next) / to_sigma(t) mult4 = (-h).expm1() return mult1, mult2, mult3, mult4 def sampler_step(self, sigma, next_sigma, denoiser, x, cond, uc=None, **kwargs): sigma_down, sigma_up = get_ancestral_step(sigma, next_sigma, eta=self.eta) denoised = self.denoise(x, denoiser, sigma, cond, uc) x_euler = self.ancestral_euler_step(x, denoised, sigma, sigma_down) if torch.sum(sigma_down) < 1e-14: # Save a network evaluation if all noise levels are 0 x = x_euler else: h, s, t, t_next = self.get_variables(sigma, sigma_down) mult = [ append_dims(mult, x.ndim) for mult in self.get_mult(h, s, t, t_next) ] x2 = mult[0] * x - mult[1] * denoised denoised2 = self.denoise(x2, denoiser, to_sigma(s), cond, uc) x_dpmpp2s = mult[2] * x - mult[3] * denoised2 # apply correction if noise level is not 0 x = torch.where(append_dims(sigma_down, x.ndim) > 0.0, x_dpmpp2s, x_euler) x = self.ancestral_step(x, sigma, next_sigma, sigma_up) return x class DPMPP2MSampler(BaseDiffusionSampler): def get_variables(self, sigma, next_sigma, previous_sigma=None): t, t_next = [to_neg_log_sigma(s) for s in (sigma, next_sigma)] h = t_next - t if previous_sigma is not None: h_last = t - to_neg_log_sigma(previous_sigma) r = h_last / h return h, r, t, t_next else: return h, None, t, t_next def get_mult(self, h, r, t, t_next, previous_sigma): mult1 = to_sigma(t_next) / to_sigma(t) mult2 = (-h).expm1() if previous_sigma is not None: mult3 = 1 + 1 / (2 * r) mult4 = 1 / (2 * r) return mult1, mult2, mult3, mult4 else: return mult1, mult2 def sampler_step( self, old_denoised, previous_sigma, sigma, next_sigma, denoiser, x, cond, uc=None, ): denoised = self.denoise(x, denoiser, sigma, cond, uc) h, r, t, t_next = self.get_variables(sigma, next_sigma, previous_sigma) mult = [ append_dims(mult, x.ndim) for mult in self.get_mult(h, r, t, t_next, previous_sigma) ] x_standard = mult[0] * x - mult[1] * denoised if old_denoised is None or torch.sum(next_sigma) < 1e-14: # Save a network evaluation if all noise levels are 0 or on the first step return x_standard, denoised else: denoised_d = mult[2] * denoised - mult[3] * old_denoised x_advanced = mult[0] * x - mult[1] * denoised_d # apply correction if noise level is not 0 and not first step x = torch.where( append_dims(next_sigma, x.ndim) > 0.0, x_advanced, x_standard ) return x, denoised def __call__(self, denoiser, x, cond, uc=None, num_steps=None, init_step=0, **kwargs): x, s_in, sigmas, num_sigmas, cond, uc = self.prepare_sampling_loop( x, cond, uc, num_steps ) old_denoised = None for i in self.get_sigma_gen(num_sigmas, init_step=init_step): x, old_denoised = self.sampler_step( old_denoised, None if i == 0 else s_in * sigmas[i - 1], s_in * sigmas[i], s_in * sigmas[i + 1], denoiser, x, cond, uc=uc, ) return x