# pytorch_diffusion + derived encoder decoder import math from typing import Any, Callable, Optional import numpy as np import torch import torch.nn as nn from einops import rearrange from packaging import version try: import xformers import xformers.ops XFORMERS_IS_AVAILABLE = True except: XFORMERS_IS_AVAILABLE = False print("no module 'xformers'. Processing without...") from ...modules.attention import LinearAttention, MemoryEfficientCrossAttention def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels, num_groups=32): return torch.nn.GroupNorm( num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True ) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=2, padding=0 ) def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1 ) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) else: self.nin_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class LinAttnBlock(LinearAttention): """to match AttnBlock usage""" def __init__(self, in_channels): super().__init__(dim=in_channels, heads=1, dim_head=in_channels) class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def attention(self, h_: torch.Tensor) -> torch.Tensor: h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) b, c, h, w = q.shape q, k, v = map( lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v) ) h_ = torch.nn.functional.scaled_dot_product_attention( q, k, v ) # scale is dim ** -0.5 per default # compute attention return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b) def forward(self, x, **kwargs): h_ = x h_ = self.attention(h_) h_ = self.proj_out(h_) return x + h_ class MemoryEfficientAttnBlock(nn.Module): """ Uses xformers efficient implementation, see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 Note: this is a single-head self-attention operation """ # def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.k = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.v = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) self.attention_op: Optional[Any] = None def attention(self, h_: torch.Tensor) -> torch.Tensor: h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention B, C, H, W = q.shape q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v)) q, k, v = map( lambda t: t.unsqueeze(3) .reshape(B, t.shape[1], 1, C) .permute(0, 2, 1, 3) .reshape(B * 1, t.shape[1], C) .contiguous(), (q, k, v), ) out = xformers.ops.memory_efficient_attention( q, k, v, attn_bias=None, op=self.attention_op ) out = ( out.unsqueeze(0) .reshape(B, 1, out.shape[1], C) .permute(0, 2, 1, 3) .reshape(B, out.shape[1], C) ) return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C) def forward(self, x, **kwargs): h_ = x h_ = self.attention(h_) h_ = self.proj_out(h_) return x + h_ class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention): def forward(self, x, context=None, mask=None, **unused_kwargs): b, c, h, w = x.shape x = rearrange(x, "b c h w -> b (h w) c") out = super().forward(x, context=context, mask=mask) out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c) return x + out def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): assert attn_type in [ "vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none", ], f"attn_type {attn_type} unknown" if ( version.parse(torch.__version__) < version.parse("2.0.0") and attn_type != "none" ): assert XFORMERS_IS_AVAILABLE, ( f"We do not support vanilla attention in {torch.__version__} anymore, " f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'" ) attn_type = "vanilla-xformers" print(f"making attention of type '{attn_type}' with {in_channels} in_channels") if attn_type == "vanilla": assert attn_kwargs is None return AttnBlock(in_channels) elif attn_type == "vanilla-xformers": print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...") return MemoryEfficientAttnBlock(in_channels) elif type == "memory-efficient-cross-attn": attn_kwargs["query_dim"] = in_channels return MemoryEfficientCrossAttentionWrapper(**attn_kwargs) elif attn_type == "none": return nn.Identity(in_channels) else: return LinAttnBlock(in_channels) class Model(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla", ): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = self.ch * 4 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.use_timestep = use_timestep if self.use_timestep: # timestep embedding self.temb = nn.Module() self.temb.dense = nn.ModuleList( [ torch.nn.Linear(self.ch, self.temb_ch), torch.nn.Linear(self.temb_ch, self.temb_ch), ] ) # downsampling self.conv_in = torch.nn.Conv2d( in_channels, self.ch, kernel_size=3, stride=1, padding=1 ) curr_res = resolution in_ch_mult = (1,) + tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, ) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, ) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] skip_in = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): if i_block == self.num_res_blocks: skip_in = ch * in_ch_mult[i_level] block.append( ResnetBlock( in_channels=block_in + skip_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d( block_in, out_ch, kernel_size=3, stride=1, padding=1 ) def forward(self, x, t=None, context=None): # assert x.shape[2] == x.shape[3] == self.resolution if context is not None: # assume aligned context, cat along channel axis x = torch.cat((x, context), dim=1) if self.use_timestep: # timestep embedding assert t is not None temb = get_timestep_embedding(t, self.ch) temb = self.temb.dense[0](temb) temb = nonlinearity(temb) temb = self.temb.dense[1](temb) else: temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block]( torch.cat([h, hs.pop()], dim=1), temb ) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h def get_last_layer(self): return self.conv_out.weight class Encoder(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", **ignore_kwargs, ): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d( in_channels, self.ch, kernel_size=3, stride=1, padding=1 ) curr_res = resolution in_ch_mult = (1,) + tuple(ch_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, ) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, ) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d( block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, x): # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, attn_type="vanilla", **ignorekwargs, ): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.tanh_out = tanh_out # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,) + tuple(ch_mult) block_in = ch * ch_mult[self.num_resolutions - 1] curr_res = resolution // 2 ** (self.num_resolutions - 1) self.z_shape = (1, z_channels, curr_res, curr_res) print( "Working with z of shape {} = {} dimensions.".format( self.z_shape, np.prod(self.z_shape) ) ) make_attn_cls = self._make_attn() make_resblock_cls = self._make_resblock() make_conv_cls = self._make_conv() # z to block_in self.conv_in = torch.nn.Conv2d( z_channels, block_in, kernel_size=3, stride=1, padding=1 ) # middle self.mid = nn.Module() self.mid.block_1 = make_resblock_cls( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, ) self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type) self.mid.block_2 = make_resblock_cls( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, ) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append( make_resblock_cls( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn_cls(block_in, attn_type=attn_type)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = make_conv_cls( block_in, out_ch, kernel_size=3, stride=1, padding=1 ) def _make_attn(self) -> Callable: return make_attn def _make_resblock(self) -> Callable: return ResnetBlock def _make_conv(self) -> Callable: return torch.nn.Conv2d def get_last_layer(self, **kwargs): return self.conv_out.weight def forward(self, z, **kwargs): # assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb, **kwargs) h = self.mid.attn_1(h, **kwargs) h = self.mid.block_2(h, temb, **kwargs) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h, temb, **kwargs) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h, **kwargs) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h, **kwargs) if self.tanh_out: h = torch.tanh(h) return h