import streamlit as st from transformers import pipeline # Load the text classification model pipeline classifier = pipeline("text-classification", model='isom5240sp24/bert-base-uncased-emotion', return_all_scores=True) # Streamlit application title st.title("Text Classification for you") st.write("Classification for 6 emotions: sadness, joy, love, anger, fear, surprise") # Text input for user to enter the text to classify text = st.text_area("Enter the text to classify", "") # Perform text classification when the user clicks the "Classify" button if st.button("Classify"): # Perform text classification on the input text results = classifier(text)[0] # Display the classification result max_score = float('-inf') max_label = '' for result in results: if result['score'] > max_score: max_score = result['score'] max_label = result['label'] st.write("Text:", text) st.write("Label:", max_label) st.write("Score:", max_score)