import random import torch import numpy as np import os def set_all_seeds(seed=42): print("set all seeds", flush=True) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def fix_state_dict(state_dict): new_state_dict = {} for k, v in state_dict.items(): name = k[7:] if k.startswith('module.') else k new_state_dict[name] = v return new_state_dict ####################################################### def load_hint_texts_from_file(file_path): hint_texts = [] with open(file_path, 'r') as file: for line in file: hint_texts.append([line.strip()]) return hint_texts def load_mask_from_file(file_path): mask = [] with open(file_path, 'r') as file: for line in file: mask.append([line.strip()]) return mask def load_file_names(file_path): with open(file_path, 'r') as file: file_names = [line.strip() for line in file] return file_names def gen_prog_ind(num_cases=16, sublist_length=4): total_range = 0.9 step = total_range / sublist_length ranges = [(i * step, i * step + step / 5) for i in range(sublist_length)] prog_ind_all = [] for _ in range(num_cases): while True: case = [random.uniform(r[0], r[1]) for r in ranges] if all(step*0.8 <= case[i+1] - case[i] <= step*1.6 for i in range(len(case) - 1)): prog_ind_all.append([case]) break return prog_ind_all