from torch.utils.data import Dataset import numpy as np import torch import os import pickle # from utils import * # from constants import get_soft_mask, get_soft_mask2, rand_sample_mask class baseDataset(Dataset): def __init__(self, folders, logger, seq_len, use_cfg, cfg_p, scale): self.folders = folders self.logger = logger self.seq_len = seq_len self.use_cfg = use_cfg self.cfg_p = cfg_p self.scale = scale self.data = {} self.len = 0 def load_data(self, folder): pass def __len__(self): return self.len def __getitem__(self, idx): pass def print_config(self, **kwargs): print("In dataset") print("Folders: ", self.folders) print("Seq len: ", self.seq_len) print("Use cfg: ", self.use_cfg) print("Cfg p: ", self.cfg_p) print("Scale: ", self.scale) print("Len: ", self.len)