import numpy as np import torch from scipy.spatial.transform import Rotation as R import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from utils.constants import SELECTED_JOINT28 local_smplx_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '../..', 'deps/smplx')) sys.path.insert(0, local_smplx_path) import smplx def get_smplx_model(bs, smplx_pth): smpl_model = smplx.create(model_path=smplx_pth, model_type='smplx', gender='male', ext='npz', batch_size=bs, ) smpl_model.eval() return smpl_model def get_a_sample(mo_data, motion_len=6, SEQLEN=16, smplx_pth=None): SEQLENTIMES2 = SEQLEN*2 transl_all = [] global_orient_all = [] body_pose_all = [] transl = mo_data['transl'] # L,3 global_orient = mo_data['global_orient'] # L,3 body_pose = mo_data['body_pose'] # L,63 -> L,21,3 length = transl.shape[0] print("Get a sample") if (length - (SEQLENTIMES2-2)*motion_len) <= 0: return None indices = np.arange(0, (SEQLENTIMES2-1)*motion_len, SEQLENTIMES2-1) for idx in indices: transl_i = transl[idx:idx+SEQLENTIMES2:2] global_orient_i = global_orient[idx:idx+SEQLENTIMES2:2] body_pose_i = body_pose[idx:idx+SEQLENTIMES2:2] b_shape = body_pose_i.shape body_pose_i = body_pose_i.reshape(-1, 3) transl_i = transl_i - np.array([transl_i[0, 0], 0., transl_i[0, 2]]) first_frame_euler = R.from_rotvec(global_orient_i[0]).as_euler('zxy') first_frame_euler = np.array([0, 0, -first_frame_euler[2]]) first_frame_matrix = R.from_euler('zxy', first_frame_euler).as_matrix() global_orient_i = ( R.from_matrix(first_frame_matrix) * R.from_rotvec(global_orient_i) ).as_rotvec() transl_i = transl_i @ first_frame_matrix.T transl_all.append(transl_i) global_orient_all.append(global_orient_i) body_pose_all.append(body_pose_i.reshape(b_shape)) transl_all = np.stack(transl_all).reshape(-1, 3) global_orient_all = np.stack(global_orient_all).reshape(-1, 3) body_pose_all = np.stack(body_pose_all).reshape(-1, 63) assert (motion_len*SEQLEN)==transl_all.shape[0] batch_size=(motion_len*SEQLEN) smpl_model = get_smplx_model(batch_size, smplx_pth=smplx_pth) with torch.no_grad(): joints = smpl_model( body_pose=torch.tensor(body_pose_all, dtype=torch.float32), global_orient=torch.tensor(global_orient_all, dtype=torch.float32), transl=torch.tensor(transl_all, dtype=torch.float32), ).joints[:, SELECTED_JOINT28] print("Get a sample returns successfully!") return joints.reshape(motion_len, SEQLEN, 28, 3) # a Tensor of size (6, 16, 28, 3)