import gradio as gr import pandas as pd from functools import reduce from yaml import safe_load from collections import defaultdict CONFIG = safe_load(open("config.yaml")) data = defaultdict(dict) # 读取数据 for settings in CONFIG['settings']: for type in CONFIG['types']: # 根据配置文件中的路径读取数据 data[settings][type] = pd.read_excel('data/' + CONFIG["settings_mapping"][settings] + f"-{type}.xlsx") # 添加平均分列并四舍五入到小数点后两位 for settings in CONFIG['settings']: for type in CONFIG['types']: data[settings][type]["Average"] = data[settings][type].iloc[:,1:].mean(axis=1).round(2) # 添加rank列 for settings in CONFIG['settings']: for type in CONFIG['types']: data[settings][type]["Rank"] = data[settings][type]["Average"].rank(ascending=False, method='min').astype(int) # 将rank列放在第一列 for settings in CONFIG['settings']: for type in CONFIG['types']: cols = data[settings][type].columns.tolist() cols = cols[-1:] + cols[:-1] data[settings][type] = data[settings][type][cols] # 四舍五入整个DataFrame到小数点后两位 for settings in CONFIG['settings']: for type in CONFIG['types']: data[settings][type] = data[settings][type].round(2) css = """ /* 强制标题居中对齐 */ table thead th, table thead td { text-align: center !important; /* 强制居中 */ } /* 调整表格宽度 */ table { --cell-width-1: 250px; } table > tbody > tr > td:nth-child(2) > div { overflow-x: auto; } .filter-checkbox-group { max-width: max-content; } /* 确保第二列(Model)完全展开 */ table > tbody > tr > td:nth-child(2) { white-space: nowrap; width: auto; } /* 紧凑显示其他列并居中对齐 */ table > tbody > tr > td:not(:nth-child(2)) { white-space: normal; width: 100px; /* 设置指标列的宽度 */ text-align: center !important; /* 水平居中并强制执行 */ vertical-align: middle; /* 垂直居中 */ } """ # 定义模型类型和大小(占位符) MODEL_TYPES = [ "Open", "Proprietary", "Sentence Transformers", "Cross-Encoders", "Bi-Encoders", "Uses Instructions", "No Instructions", ] NUMERIC_INTERVALS = { "<100M": pd.Interval(0, 100, closed="right"), "100M to 250M": pd.Interval(100, 250, closed="right"), "250M to 500M": pd.Interval(250, 500, closed="right"), "500M to 1B": pd.Interval(500, 1000, closed="right"), ">1B": pd.Interval(1000, 1_000_000, closed="right"), } # 定义过滤函数 def filter_data(search_query, model_types, model_sizes): output_df = df.copy() # Apply the search query if search_query: names = output_df.index.str.lower() masks = [] for query in search_query.split(";"): masks.append(names.str.contains(query.lower())) output_df = output_df[reduce(lambda a, b: a | b, masks)] # Apply the model type filtering if set(model_types) != set(MODEL_TYPES): # Placeholder logic for model type filtering pass # Apply the model size filtering if model_sizes: # Placeholder logic for model size filtering pass return output_df.round(2) # 创建示例 DataFrame (假设 df 是一个示例 DataFrame) df = pd.DataFrame({ 'Model': ['ModelA', 'ModelB'], 'Metric1': [0.123456, 0.789123], 'Metric2': [0.654321, 0.321654], 'Average': [0.0, 0.0], 'Rank': [0, 0] }) # 计算 Average 和 Rank 并四舍五入 df['Average'] = df.iloc[:, 1:-1].mean(axis=1).round(2) df['Rank'] = df['Average'].rank(ascending=False, method='min').astype(int) cols = df.columns.tolist() cols = cols[-1:] + cols[:-1] df = df[cols] # Create the Gradio interface with gr.Blocks(css=css) as demo: with gr.Tab(elem_classes="container"): gr.Markdown("# Model Leaderboard") with gr.Row(): search_box = gr.Textbox( label="Search Models (separate by ';')", placeholder="🔍 Search for a model and press enter...", scale=3 ) model_type_checkbox_group = gr.CheckboxGroup( label="Model types", choices=MODEL_TYPES, value=MODEL_TYPES, interactive=True, elem_classes=["filter-checkbox-group"], scale=3 ) model_size_checkbox_group = gr.CheckboxGroup( label="Model sizes (in number of parameters)", choices=list(NUMERIC_INTERVALS.keys()), value=list(NUMERIC_INTERVALS.keys()), interactive=True, elem_classes=["filter-checkbox-group"], scale=2, ) submit_button = gr.Button("Filter Data") with gr.Tabs() as result_table: for settings in CONFIG['settings']: with gr.Tab(label=settings): for type in CONFIG['types']: with gr.Tab(label=type, elem_classes="container"): gr.Markdown(f"### {type} Leaderboard") gr.DataFrame(data[settings][type], type="pandas") demo.launch()