# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de import os from lib.renderer.mesh import load_scan, compute_tangent from lib.renderer.camera import Camera import cv2 import math import random import numpy as np def render_result(rndr, shader_id, path, mask=False): cam_render = rndr.get_color(shader_id) cam_render = cv2.cvtColor(cam_render, cv2.COLOR_RGBA2BGRA) os.makedirs(os.path.dirname(path), exist_ok=True) if shader_id != 2: cv2.imwrite(path, np.uint8(255.0 * cam_render)) else: cam_render[:, :, -1] -= 0.5 cam_render[:, :, -1] *= 2.0 if not mask: cv2.imwrite(path, np.uint8(255.0 / 2.0 * (cam_render + 1.0))) else: cv2.imwrite(path, np.uint8(-1.0 * cam_render[:, :, [3]])) def make_rotate(rx, ry, rz): sinX = np.sin(rx) sinY = np.sin(ry) sinZ = np.sin(rz) cosX = np.cos(rx) cosY = np.cos(ry) cosZ = np.cos(rz) Rx = np.zeros((3, 3)) Rx[0, 0] = 1.0 Rx[1, 1] = cosX Rx[1, 2] = -sinX Rx[2, 1] = sinX Rx[2, 2] = cosX Ry = np.zeros((3, 3)) Ry[0, 0] = cosY Ry[0, 2] = sinY Ry[1, 1] = 1.0 Ry[2, 0] = -sinY Ry[2, 2] = cosY Rz = np.zeros((3, 3)) Rz[0, 0] = cosZ Rz[0, 1] = -sinZ Rz[1, 0] = sinZ Rz[1, 1] = cosZ Rz[2, 2] = 1.0 R = np.matmul(np.matmul(Rz, Ry), Rx) return R def rotateSH(SH, R): SHn = SH # 1st order SHn[1] = R[1, 1] * SH[1] - R[1, 2] * SH[2] + R[1, 0] * SH[3] SHn[2] = -R[2, 1] * SH[1] + R[2, 2] * SH[2] - R[2, 0] * SH[3] SHn[3] = R[0, 1] * SH[1] - R[0, 2] * SH[2] + R[0, 0] * SH[3] # 2nd order SHn[4:, 0] = rotateBand2(SH[4:, 0], R) SHn[4:, 1] = rotateBand2(SH[4:, 1], R) SHn[4:, 2] = rotateBand2(SH[4:, 2], R) return SHn def rotateBand2(x, R): s_c3 = 0.94617469575 s_c4 = -0.31539156525 s_c5 = 0.54627421529 s_c_scale = 1.0 / 0.91529123286551084 s_c_scale_inv = 0.91529123286551084 s_rc2 = 1.5853309190550713 * s_c_scale s_c4_div_c3 = s_c4 / s_c3 s_c4_div_c3_x2 = (s_c4 / s_c3) * 2.0 s_scale_dst2 = s_c3 * s_c_scale_inv s_scale_dst4 = s_c5 * s_c_scale_inv sh0 = x[3] + x[4] + x[4] - x[1] sh1 = x[0] + s_rc2 * x[2] + x[3] + x[4] sh2 = x[0] sh3 = -x[3] sh4 = -x[1] r2x = R[0][0] + R[0][1] r2y = R[1][0] + R[1][1] r2z = R[2][0] + R[2][1] r3x = R[0][0] + R[0][2] r3y = R[1][0] + R[1][2] r3z = R[2][0] + R[2][2] r4x = R[0][1] + R[0][2] r4y = R[1][1] + R[1][2] r4z = R[2][1] + R[2][2] sh0_x = sh0 * R[0][0] sh0_y = sh0 * R[1][0] d0 = sh0_x * R[1][0] d1 = sh0_y * R[2][0] d2 = sh0 * (R[2][0] * R[2][0] + s_c4_div_c3) d3 = sh0_x * R[2][0] d4 = sh0_x * R[0][0] - sh0_y * R[1][0] sh1_x = sh1 * R[0][2] sh1_y = sh1 * R[1][2] d0 += sh1_x * R[1][2] d1 += sh1_y * R[2][2] d2 += sh1 * (R[2][2] * R[2][2] + s_c4_div_c3) d3 += sh1_x * R[2][2] d4 += sh1_x * R[0][2] - sh1_y * R[1][2] sh2_x = sh2 * r2x sh2_y = sh2 * r2y d0 += sh2_x * r2y d1 += sh2_y * r2z d2 += sh2 * (r2z * r2z + s_c4_div_c3_x2) d3 += sh2_x * r2z d4 += sh2_x * r2x - sh2_y * r2y sh3_x = sh3 * r3x sh3_y = sh3 * r3y d0 += sh3_x * r3y d1 += sh3_y * r3z d2 += sh3 * (r3z * r3z + s_c4_div_c3_x2) d3 += sh3_x * r3z d4 += sh3_x * r3x - sh3_y * r3y sh4_x = sh4 * r4x sh4_y = sh4 * r4y d0 += sh4_x * r4y d1 += sh4_y * r4z d2 += sh4 * (r4z * r4z + s_c4_div_c3_x2) d3 += sh4_x * r4z d4 += sh4_x * r4x - sh4_y * r4y dst = x dst[0] = d0 dst[1] = -d1 dst[2] = d2 * s_scale_dst2 dst[3] = -d3 dst[4] = d4 * s_scale_dst4 return dst def load_calib(param, render_size=512): # pixel unit / world unit ortho_ratio = param['ortho_ratio'] # world unit / model unit scale = param['scale'] # camera center world coordinate center = param['center'] # model rotation R = param['R'] translate = -np.matmul(R, center).reshape(3, 1) extrinsic = np.concatenate([R, translate], axis=1) extrinsic = np.concatenate( [extrinsic, np.array([0, 0, 0, 1]).reshape(1, 4)], 0) # Match camera space to image pixel space scale_intrinsic = np.identity(4) scale_intrinsic[0, 0] = scale / ortho_ratio scale_intrinsic[1, 1] = -scale / ortho_ratio scale_intrinsic[2, 2] = scale / ortho_ratio # Match image pixel space to image uv space uv_intrinsic = np.identity(4) uv_intrinsic[0, 0] = 1.0 / float(render_size // 2) uv_intrinsic[1, 1] = 1.0 / float(render_size // 2) uv_intrinsic[2, 2] = 1.0 / float(render_size // 2) intrinsic = np.matmul(uv_intrinsic, scale_intrinsic) calib = np.concatenate([extrinsic, intrinsic], axis=0) return calib def render_prt_ortho(out_path, folder_name, subject_name, shs, rndr, rndr_uv, im_size, angl_step=4, n_light=1, pitch=[0]): cam = Camera(width=im_size, height=im_size) cam.ortho_ratio = 0.4 * (512 / im_size) cam.near = -100 cam.far = 100 cam.sanity_check() # set path for obj, prt mesh_file = os.path.join(folder_name, subject_name + '_100k.obj') if not os.path.exists(mesh_file): print('ERROR: obj file does not exist!!', mesh_file) return prt_file = os.path.join(folder_name, 'bounce', 'bounce0.txt') if not os.path.exists(prt_file): print('ERROR: prt file does not exist!!!', prt_file) return face_prt_file = os.path.join(folder_name, 'bounce', 'face.npy') if not os.path.exists(face_prt_file): print('ERROR: face prt file does not exist!!!', prt_file) return text_file = os.path.join(folder_name, 'tex', subject_name + '_dif_2k.jpg') if not os.path.exists(text_file): print('ERROR: dif file does not exist!!', text_file) return texture_image = cv2.imread(text_file) texture_image = cv2.cvtColor(texture_image, cv2.COLOR_BGR2RGB) vertices, faces, normals, faces_normals, textures, face_textures = load_scan( mesh_file, with_normal=True, with_texture=True) vmin = vertices.min(0) vmax = vertices.max(0) up_axis = 1 if (vmax - vmin).argmax() == 1 else 2 vmed = np.median(vertices, 0) vmed[up_axis] = 0.5 * (vmax[up_axis] + vmin[up_axis]) y_scale = 180 / (vmax[up_axis] - vmin[up_axis]) rndr.set_norm_mat(y_scale, vmed) rndr_uv.set_norm_mat(y_scale, vmed) tan, bitan = compute_tangent(vertices, faces, normals, textures, face_textures) prt = np.loadtxt(prt_file) face_prt = np.load(face_prt_file) rndr.set_mesh(vertices, faces, normals, faces_normals, textures, face_textures, prt, face_prt, tan, bitan) rndr.set_albedo(texture_image) rndr_uv.set_mesh(vertices, faces, normals, faces_normals, textures, face_textures, prt, face_prt, tan, bitan) rndr_uv.set_albedo(texture_image) os.makedirs(os.path.join(out_path, 'GEO', 'OBJ', subject_name), exist_ok=True) os.makedirs(os.path.join(out_path, 'PARAM', subject_name), exist_ok=True) os.makedirs(os.path.join(out_path, 'RENDER', subject_name), exist_ok=True) os.makedirs(os.path.join(out_path, 'MASK', subject_name), exist_ok=True) os.makedirs(os.path.join(out_path, 'UV_RENDER', subject_name), exist_ok=True) os.makedirs(os.path.join(out_path, 'UV_MASK', subject_name), exist_ok=True) os.makedirs(os.path.join(out_path, 'UV_POS', subject_name), exist_ok=True) os.makedirs(os.path.join(out_path, 'UV_NORMAL', subject_name), exist_ok=True) if not os.path.exists(os.path.join(out_path, 'val.txt')): f = open(os.path.join(out_path, 'val.txt'), 'w') f.close() # copy obj file cmd = 'cp %s %s' % (mesh_file, os.path.join(out_path, 'GEO', 'OBJ', subject_name)) print(cmd) os.system(cmd) for p in pitch: for y in tqdm(range(0, 360, angl_step)): R = np.matmul(make_rotate(math.radians(p), 0, 0), make_rotate(0, math.radians(y), 0)) if up_axis == 2: R = np.matmul(R, make_rotate(math.radians(90), 0, 0)) rndr.rot_matrix = R rndr_uv.rot_matrix = R rndr.set_camera(cam) rndr_uv.set_camera(cam) for j in range(n_light): sh_id = random.randint(0, shs.shape[0] - 1) sh = shs[sh_id] sh_angle = 0.2 * np.pi * (random.random() - 0.5) sh = rotateSH(sh, make_rotate(0, sh_angle, 0).T) dic = { 'sh': sh, 'ortho_ratio': cam.ortho_ratio, 'scale': y_scale, 'center': vmed, 'R': R } rndr.set_sh(sh) rndr.analytic = False rndr.use_inverse_depth = False rndr.display() out_all_f = rndr.get_color(0) out_mask = out_all_f[:, :, 3] out_all_f = cv2.cvtColor(out_all_f, cv2.COLOR_RGBA2BGR) np.save( os.path.join(out_path, 'PARAM', subject_name, '%d_%d_%02d.npy' % (y, p, j)), dic) cv2.imwrite( os.path.join(out_path, 'RENDER', subject_name, '%d_%d_%02d.jpg' % (y, p, j)), 255.0 * out_all_f) cv2.imwrite( os.path.join(out_path, 'MASK', subject_name, '%d_%d_%02d.png' % (y, p, j)), 255.0 * out_mask) rndr_uv.set_sh(sh) rndr_uv.analytic = False rndr_uv.use_inverse_depth = False rndr_uv.display() uv_color = rndr_uv.get_color(0) uv_color = cv2.cvtColor(uv_color, cv2.COLOR_RGBA2BGR) cv2.imwrite( os.path.join(out_path, 'UV_RENDER', subject_name, '%d_%d_%02d.jpg' % (y, p, j)), 255.0 * uv_color) if y == 0 and j == 0 and p == pitch[0]: uv_pos = rndr_uv.get_color(1) uv_mask = uv_pos[:, :, 3] cv2.imwrite( os.path.join(out_path, 'UV_MASK', subject_name, '00.png'), 255.0 * uv_mask) data = { 'default': uv_pos[:, :, :3] } # default is a reserved name pyexr.write( os.path.join(out_path, 'UV_POS', subject_name, '00.exr'), data) uv_nml = rndr_uv.get_color(2) uv_nml = cv2.cvtColor(uv_nml, cv2.COLOR_RGBA2BGR) cv2.imwrite( os.path.join(out_path, 'UV_NORMAL', subject_name, '00.png'), 255.0 * uv_nml)