import torch import numpy as np from torch.nn import functional as F """ Useful geometric operations, e.g. Perspective projection and a differentiable Rodrigues formula Parts of the code are taken from https://github.com/MandyMo/pytorch_HMR """ def batch_rodrigues(theta): """Convert axis-angle representation to rotation matrix. Args: theta: size = [B, 3] Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ l1norm = torch.norm(theta + 1e-8, p=2, dim=1) angle = torch.unsqueeze(l1norm, -1) normalized = torch.div(theta, angle) angle = angle * 0.5 v_cos = torch.cos(angle) v_sin = torch.sin(angle) quat = torch.cat([v_cos, v_sin * normalized], dim=1) return quat_to_rotmat(quat) def quat_to_rotmat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [B, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [B, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] B = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack([ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2 ], dim=1).view(B, 3, 3) return rotMat def rotation_matrix_to_angle_axis(rotation_matrix): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to Rodrigues vector Args: rotation_matrix (Tensor): rotation matrix. Returns: Tensor: Rodrigues vector transformation. Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 3)` Example: >>> input = torch.rand(2, 3, 4) # Nx4x4 >>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 """ if rotation_matrix.shape[1:] == (3, 3): rot_mat = rotation_matrix.reshape(-1, 3, 3) hom = torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device).reshape( 1, 3, 1).expand(rot_mat.shape[0], -1, -1) rotation_matrix = torch.cat([rot_mat, hom], dim=-1) quaternion = rotation_matrix_to_quaternion(rotation_matrix) aa = quaternion_to_angle_axis(quaternion) aa[torch.isnan(aa)] = 0.0 return aa def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: """ This function is borrowed from https://github.com/kornia/kornia Convert quaternion vector to angle axis of rotation. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion (torch.Tensor): tensor with quaternions. Return: torch.Tensor: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 """ if not torch.is_tensor(quaternion): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(quaternion))) if not quaternion.shape[-1] == 4: raise ValueError( "Input must be a tensor of shape Nx4 or 4. Got {}".format( quaternion.shape)) # unpack input and compute conversion q1: torch.Tensor = quaternion[..., 1] q2: torch.Tensor = quaternion[..., 2] q3: torch.Tensor = quaternion[..., 3] sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[..., 0] two_theta: torch.Tensor = 2.0 * torch.where( cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta)) k_pos: torch.Tensor = two_theta / sin_theta k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 Args: rotation_matrix (Tensor): the rotation matrix to convert. Return: Tensor: the rotation in quaternion Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 4)` Example: >>> input = torch.rand(4, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 """ if not torch.is_tensor(rotation_matrix): raise TypeError("Input type is not a torch.Tensor. Got {}".format( type(rotation_matrix))) if len(rotation_matrix.shape) > 3: raise ValueError( "Input size must be a three dimensional tensor. Got {}".format( rotation_matrix.shape)) if not rotation_matrix.shape[-2:] == (3, 4): raise ValueError( "Input size must be a N x 3 x 4 tensor. Got {}".format( rotation_matrix.shape)) rmat_t = torch.transpose(rotation_matrix, 1, 2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack([ rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] ], -1) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack([ rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] ], -1) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack([ rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 ], -1) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack([ t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] ], -1) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1 mask_c1 = mask_d2 * ~mask_d0_d1 mask_c2 = ~mask_d2 * mask_d0_nd1 mask_c3 = ~mask_d2 * ~mask_d0_nd1 mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa t2_rep * mask_c2 + t3_rep * mask_c3) # noqa q *= 0.5 return q def rot6d_to_rotmat(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ x = x.view(-1, 3, 2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) b3 = torch.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) def projection(pred_joints, pred_camera, retain_z=False): pred_cam_t = torch.stack([ pred_camera[:, 1], pred_camera[:, 2], 2 * 5000. / (224. * pred_camera[:, 0] + 1e-9) ], dim=-1) batch_size = pred_joints.shape[0] camera_center = torch.zeros(batch_size, 2) pred_keypoints_2d = perspective_projection( pred_joints, rotation=torch.eye(3).unsqueeze(0).expand(batch_size, -1, -1).to(pred_joints.device), translation=pred_cam_t, focal_length=5000., camera_center=camera_center, retain_z=retain_z) # Normalize keypoints to [-1,1] pred_keypoints_2d = pred_keypoints_2d / (224. / 2.) return pred_keypoints_2d def perspective_projection(points, rotation, translation, focal_length, camera_center, retain_z=False): """ This function computes the perspective projection of a set of points. Input: points (bs, N, 3): 3D points rotation (bs, 3, 3): Camera rotation translation (bs, 3): Camera translation focal_length (bs,) or scalar: Focal length camera_center (bs, 2): Camera center """ batch_size = points.shape[0] K = torch.zeros([batch_size, 3, 3], device=points.device) K[:, 0, 0] = focal_length K[:, 1, 1] = focal_length K[:, 2, 2] = 1. K[:, :-1, -1] = camera_center # Transform points points = torch.einsum('bij,bkj->bki', rotation, points) points = points + translation.unsqueeze(1) # Apply perspective distortion projected_points = points / points[:, :, -1].unsqueeze(-1) # Apply camera intrinsics projected_points = torch.einsum('bij,bkj->bki', K, projected_points) if retain_z: return projected_points else: return projected_points[:, :, :-1] def estimate_translation_np(S, joints_2d, joints_conf, focal_length=5000, img_size=224): """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (25, 3) 3D joint locations joints: (25, 3) 2D joint locations and confidence Returns: (3,) camera translation vector """ num_joints = S.shape[0] # focal length f = np.array([focal_length, focal_length]) # optical center center = np.array([img_size / 2., img_size / 2.]) # transformations Z = np.reshape(np.tile(S[:, 2], (2, 1)).T, -1) XY = np.reshape(S[:, 0:2], -1) O = np.tile(center, num_joints) F = np.tile(f, num_joints) weight2 = np.reshape(np.tile(np.sqrt(joints_conf), (2, 1)).T, -1) # least squares Q = np.array([ F * np.tile(np.array([1, 0]), num_joints), F * np.tile(np.array([0, 1]), num_joints), O - np.reshape(joints_2d, -1) ]).T c = (np.reshape(joints_2d, -1) - O) * Z - F * XY # weighted least squares W = np.diagflat(weight2) Q = np.dot(W, Q) c = np.dot(W, c) # square matrix A = np.dot(Q.T, Q) b = np.dot(Q.T, c) # solution trans = np.linalg.solve(A, b) return trans def estimate_translation(S, joints_2d, focal_length=5000., img_size=224.): """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (B, 49, 3) 3D joint locations joints: (B, 49, 3) 2D joint locations and confidence Returns: (B, 3) camera translation vectors """ device = S.device # Use only joints 25:49 (GT joints) S = S[:, 25:, :].cpu().numpy() joints_2d = joints_2d[:, 25:, :].cpu().numpy() joints_conf = joints_2d[:, :, -1] joints_2d = joints_2d[:, :, :-1] trans = np.zeros((S.shape[0], 3), dtype=np.float32) # Find the translation for each example in the batch for i in range(S.shape[0]): S_i = S[i] joints_i = joints_2d[i] conf_i = joints_conf[i] trans[i] = estimate_translation_np(S_i, joints_i, conf_i, focal_length=focal_length, img_size=img_size) return torch.from_numpy(trans).to(device) def Rot_y(angle, category='torch', prepend_dim=True, device=None): '''Rotate around y-axis by angle Args: category: 'torch' or 'numpy' prepend_dim: prepend an extra dimension Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) ''' m = np.array([[np.cos(angle), 0., np.sin(angle)], [0., 1., 0.], [-np.sin(angle), 0., np.cos(angle)]]) if category == 'torch': if prepend_dim: return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0) else: return torch.tensor(m, dtype=torch.float, device=device) elif category == 'numpy': if prepend_dim: return np.expand_dims(m, 0) else: return m else: raise ValueError("category must be 'torch' or 'numpy'") def Rot_x(angle, category='torch', prepend_dim=True, device=None): '''Rotate around x-axis by angle Args: category: 'torch' or 'numpy' prepend_dim: prepend an extra dimension Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) ''' m = np.array([[1., 0., 0.], [0., np.cos(angle), -np.sin(angle)], [0., np.sin(angle), np.cos(angle)]]) if category == 'torch': if prepend_dim: return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0) else: return torch.tensor(m, dtype=torch.float, device=device) elif category == 'numpy': if prepend_dim: return np.expand_dims(m, 0) else: return m else: raise ValueError("category must be 'torch' or 'numpy'") def Rot_z(angle, category='torch', prepend_dim=True, device=None): '''Rotate around z-axis by angle Args: category: 'torch' or 'numpy' prepend_dim: prepend an extra dimension Return: Rotation matrix with shape [1, 3, 3] (prepend_dim=True) ''' m = np.array([[np.cos(angle), -np.sin(angle), 0.], [np.sin(angle), np.cos(angle), 0.], [0., 0., 1.]]) if category == 'torch': if prepend_dim: return torch.tensor(m, dtype=torch.float, device=device).unsqueeze(0) else: return torch.tensor(m, dtype=torch.float, device=device) elif category == 'numpy': if prepend_dim: return np.expand_dims(m, 0) else: return m else: raise ValueError("category must be 'torch' or 'numpy'")